

core
SERVLETS AND
JAVASERVER PAGES
VOLUME 2–ADVANCED TECHNOLOGIES

SECOND EDITION

This page intentionally left blank

MARTY HALL
LARRY BROWN
YAAKOV CHAIKIN

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

core
SERVLETS AND
JAVASERVER PAGES
VOLUME 2–ADVANCED TECHNOLOGIES

SECOND EDITION

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact:
U.S. Corporate and Government Sales

(800) 382-3419
corpsales@pearsontechgroup.com
For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com
Library of Congress Control Number: 2003058100
Copyright © 2008 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-148260-9
ISBN-10: 0-13-148260-2
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, December 2007

http://www.prenhallprofessional.com/safarienabled
www.prenhallprofessional.com

v

ContentsContents

INTRODUCTION xvii

Who Should Read This Book xviii

Conventions xix

About the Web Site xx

ACKNOWLEDGMENTS xxi

ABOUT THE AUTHORS xxii

1 USING AND DEPLOYING WEB APPLICATIONS 2

1.1 Purpose of Web Applications 3
Organization 4

Portability 4

Separation 4
1.2 Structure of Web Applications 5

Locations for Various File Types 5

Contentsvi

1.3 Registering Web Applications with the Server 9

Registering a Web Application with Tomcat 10
Registering a Web Application with Other Servers 12

1.4 Development and Deployment Strategies 14

Copying to a Shortcut or Symbolic Link 15
Using IDE-Specific Deployment Features 16

Using Ant, Maven, or a Similar Tool 16

Using an IDE in Combination with Ant 17
1.5 The Art of WAR: Bundling Web

Applications into WAR Files 17

1.6 Building a Simple Web Application 18

Download and Rename app-blank to testApp 18
Download test.html, test.jsp, and TestServlet.java 19

Add test.html, test.jsp to the testApp Web Application 19

Place TestServlet.java into the
testApp/WEB-INF/classes/coreservlets Directory 20
Compile TestServlet.java 20

Declare TestServlet.class and the URL
That Will Invoke It in web.xml 21

Copy testApp to tomcat_dir/webapps 23
Start Tomcat 23

Access testApp with the URL of the Form
http://localhost/testApp/someResource 23

1.7 Sharing Data Among Web Applications 25

2 CONTROLLING WEB APPLICATION
BEHAVIOR WITH WEB.XML 34

2.1 Purpose of the Deployment Descriptor 35

2.2 Defining the Header and the Root Element 36

2.3 The Elements of web.xml 37
Version 2.4 38

Version 2.3 40

2.4 Assigning Names and Custom URLs 42
Assigning Names 42

Contents vii

Defining Custom URLs 44

Naming JSP Pages 50
2.5 Disabling the Invoker Servlet 52

Remapping the /servlet/ URL Pattern 53

Globally Disabling the Invoker: Tomcat 55
2.6 Initializing and Preloading Servlets and JSP Pages 56

Assigning Servlet Initialization Parameters 56

Assigning JSP Initialization Parameters 60
Supplying Application-Wide Initialization Parameters 63

Loading Servlets When the Server Starts 64

2.7 Declaring Filters 68
2.8 Specifying Welcome Pages 71

2.9 Designating Pages to Handle Errors 72

The error-code Element 73
The exception-type Element 75

2.10 Providing Security 78

Designating the Authentication Method 78
Restricting Access to Web Resources 80

Assigning Role Names 83

2.11 Controlling Session Timeouts 83
2.12 Documenting Web Applications 84

2.13 Associating Files with MIME Types 85

2.14 Configuring JSP Pages 86
Locating Tag Library Descriptors 86

Configuring JSP Page Properties 87

2.15 Configuring Character Encoding 93
2.16 Designating Application Event Listeners 93

2.17 Developing for the Clustered Environment 95

2.18 J2EE Elements 97

Contentsviii

3 DECLARATIVE SECURITY 104

3.1 Form-Based Authentication 106

Setting Up Usernames, Passwords, and Roles 108

Telling the Server You Are Using Form-Based
Authentication; Designating Locations of Login
and Login-Failure Pages 110
Creating the Login Page 111

Creating the Page to Report
Failed Login Attempts 114

Specifying URLs That Should Be Password Protected 115
Listing All Possible Abstract Roles 118

Specifying URLs That Should Be
Available Only with SSL 119

Turning Off the Invoker Servlet 120
3.2 Example: Form-Based Authentication 122

The Home Page 122

The Deployment Descriptor 123
The Password File 127

The Login and Login-Failure Pages 128

The investing Directory 129
The ssl Directory 132

The admin Directory 138

The NoInvoker Servlet 140
Unprotected Pages 141

3.3 BASIC Authentication 143

Setting Up Usernames, Passwords, and Roles 145
Telling the Server You Are Using BASIC
Authentication; Designating Realm 145

Specifying URLs That Should Be Password Protected 146

Listing All Possible Abstract Roles 146
Specifying URLs That Should Be
Available Only with SSL 147

3.4 Example: BASIC Authentication 147

The Home Page 147

Contents ix

The Deployment Descriptor 149

The Password File 151
The Financial Plan 152

The Business Plan 154

The NoInvoker Servlet 156
3.5 Configuring Tomcat to Use SSL 156

3.6 WebClient: Talking to Web Servers Interactively 164

3.7 Signing a Server Certificate 167
Exporting the CA Certificate 170

Using WebClient with Tomcat and SSL 175

4 PROGRAMMATIC SECURITY 178

4.1 Combining Container-Managed
and Programmatic Security 180

Security Role References 182

4.2 Example: Combining Container-Managed
and Programmatic Security 183

4.3 Handling All Security Programmatically 188

4.4 Example: Handling All Security Programmatically 190

4.5 Using Programmatic Security with SSL 195
Determining If SSL Is in Use 195

Redirecting Non-SSL Requests 195

Discovering the Number of Bits in the Key 196
Looking Up the Encryption Algorithm 196

Accessing Client X.509 Certificates 197

4.6 Example: Programmatic Security and SSL 197

5 SERVLET AND JSP FILTERS 202

5.1 Creating Basic Filters 204
Create a Class That Implements the Filter Interface 205

Put the Filtering Behavior in the doFilter Method 206

Call the doFilter Method of the FilterChain Object 206

Contentsx

Register the Filter with the Appropriate
Servlets and JSP Pages 207

Disable the Invoker Servlet 209
5.2 Example: A Reporting Filter 210

5.3 Accessing the Servlet Context from Filters 217

5.4 Example: A Logging Filter 218
5.5 Using Filter Initialization Parameters 221

5.6 Example: An Access Time Filter 223

5.7 Blocking the Response 226
5.8 Example: A Prohibited-Site Filter 227

5.9 Modifying the Response 234

A Reusable Response Wrapper 235
5.10 Example: A Replacement Filter 237

A Generic Modification Filter 237

A Specific Modification Filter 239
5.11 Example: A Compression Filter 245

5.12 Configuring Filters to Work with RequestDispatcher 251

5.13 Example: Plugging a Potential Security Hole 253
5.14 The Complete Filter Deployment Descriptor 260

6 THE APPLICATION EVENTS FRAMEWORK 266

6.1 Monitoring Creation and Destruction
of the Servlet Context 270

6.2 Example: Initializing Commonly Used Data 271

6.3 Detecting Changes in Servlet Context Attributes 277

6.4 Example: Monitoring Changes to
Commonly Used Data 278

6.5 Packaging Listeners with Tag Libraries 288

6.6 Example: Packaging the Company Name Listeners 290

6.7 Recognizing Session Creation and Destruction 297
6.8 Example: A Listener That Counts Sessions 298

Disabling Cookies 305

6.9 Watching for Changes in Session Attributes 306
6.10 Example: Monitoring Yacht Orders 307

Contents xi

6.11 Identifying Servlet Request
Initialization and Destruction 314

6.12 Example: Calculating Server Request Load 315
6.13 Watching Servlet Request for Attribute Changes 322

6.14 Example: Stopping Request Frequency Collection 323

6.15 Using Multiple Cooperating Listeners 325
Tracking Orders for the Daily Special 326

Resetting the Daily Special Order Count 334

6.16 The Complete Events Deployment Descriptor 339

7 TAG LIBRARIES: THE BASICS 346

7.1 Tag Library Components 348

The Tag Handler Class 348
The Tag Library Descriptor File 349

The JSP File 352

7.2 Example: Simple Prime Tag 353
7.3 Assigning Attributes to Tags 357

Tag Attributes: Tag Handler Class 357

Tag Attributes: Tag Library Descriptor 358
Tag Attributes: JSP File 359

7.4 Example: Prime Tag with Variable Length 359

7.5 Including Tag Body in the Tag Output 362
Tag Bodies: Tag Handler Class 362

Tag Bodies: Tag Library Descriptor 363

Tag Bodies: JSP File 363
7.6 Example: Heading Tag 364

7.7 Example: Debug Tag 368

7.8 Creating Tag Files 371
7.9 Example: Simple Prime Tag Using Tag Files 372

7.10 Example: Prime Tag with Variable
Length Using Tag Files 374

7.11 Example: Heading Tag Using Tag Files 376

Contentsxii

8 TAG LIBRARIES: ADVANCED FEATURES 378

8.1 Manipulating Tag Body 380

8.2 Example: HTML-Filtering Tag 381

8.3 Assigning Dynamic Values to Tag Attributes 385
Dynamic Attribute Values: Tag Handler Class 385

Dynamic Attribute Values: Tag Library Descriptor 386

Dynamic Attribute Values: JSP File 386
8.4 Example: Simple Looping Tag 387

8.5 Assigning Complex Objects
as Values to Tag Attributes 391

Complex Dynamic Attribute
Values: Tag Handler Class 391
Complex Dynamic Attribute
Values: Tag Library Descriptor 391

Complex Dynamic Attribute Values: JSP File 392

8.6 Example: Table Formatting Tag 393
8.7 Creating Looping Tags 398

8.8 Example: ForEach Tag 399

8.9 Creating Expression Language Functions 404
8.10 Example: Improved Debug Tag 407

8.11 Handling Nested Custom Tags 410

8.12 Example: If-Then-Else Tag 412

9 JSP STANDARD TAG LIBRARY (JSTL) 418

9.1 Installation of JSTL 420
9.2 c:out Tag 421

9.3 c:forEach and c:forTokens Tags 422

9.4 c:if Tag 424
9.5 c:choose Tag 425

9.6 c:set and c:remove Tags 427

9.7 c:import Tag 430
9.8 c:url and c:param Tags 433

9.9 c:redirect Tag 435

9.10 c:catch Tag 437

Contents xiii

10 THE STRUTS FRAMEWORK: BASICS 440

10.1 Understanding Struts 441

Different Views of Struts 441

Advantages of Apache Struts (Compared to
MVC with RequestDispatcher and the EL) 442
Disadvantages of Apache Struts (Compared to
MVC with RequestDispatcher and the EL) 444

10.2 Setting Up Struts 446

Installing Struts 446
Testing Struts 448

Making Your Own Struts Applications 448

Adding Struts to an Existing Web Application 449
10.3 The Struts Flow of Control and the

Six Steps to Implementing It 450

Struts Flow of Control 450

The Six Basic Steps in Using Struts 454
10.4 Processing Requests with Action Objects 458

Understanding Actions 458

Example: One Result Mapping 463
Example: Multiple Result Mappings 470

Combining Shared Condition (Forward) Mappings 479

10.5 Handling Request Parameters with Form Beans 481
Struts Flow of Control: Updates for Bean Use 482

The Six Basic Steps in Using Struts 484

Understanding Form Beans 486
Displaying Bean Properties 488

Example: Form and Results Beans 490

10.6 Prepopulating and Redisplaying Input Forms 504
Struts Flow of Control 504

The Six Basic Steps in Using Struts 506

Using Struts html: Tags 508
Prepopulating Forms 510

Example: Prepopulating Forms 511

Contentsxiv

URL Design Strategies for Actions 523

Redisplaying Forms 525
Example: Redisplaying Forms 528

11 THE STRUTS FRAMEWORK: DOING MORE 538

11.1 Using Properties Files 539
Advantages of Properties Files 540

Struts Flow of Control—Updates for Properties Files 540

Steps for Using Properties Files 542
Example: Simple Messages 546

Dynamic Keys 552

Parameterized Messages 553
11.2 Internationalizing Applications 554

Loading Locale-Specific Properties Files 554

Setting Language Preferences in Browsers 554
Example: Internationalizing for
English, Spanish, and French 555

Results 556

11.3 Laying Out Pages with Tiles 558
Tiles Motivations 558

Prerequisites for Tiles 558

The Four Basic Steps in Using Tiles 560
Example: Simple Tiles 563

Handling Relative URLs 568

Example: e-boats Application 570
11.4 Using Tiles Definitions 582

Tiles Definitions Motivations 583

The Five Basic Steps in Using Tiles Definitions 583
Example: e-boats Application with Tiles Definitions 586

Contents xv

12 THE STRUTS FRAMEWORK:
VALIDATING USER INPUT 592

12.1 Validating in the Action Class 594
Struts Flow of Control 594

Performing Validation in the Action 596

Example: Choosing Colors and Font Sizes for Resume 599
12.2 Validating in the Form Bean 607

Struts Flow of Control 607

Performing Validation in the ActionForm 609
Example: Choosing Colors and
Font Sizes for a Resume (Take 2) 612

Using Parameterized Error Messages 620

Example: Validation with Parameterized Messages 620
12.3 Using the Automatic Validation Framework 624

Manual versus Automatic Validation 624

Client-Side versus Server-Side Validation 624
Struts Flow of Control 625

Steps in Using Automatic Validation 627

Example: Automatic Validation 633

APPENDIX
DEVELOPING APPLICATIONS WITH APACHE ANT 644

A.1 Summarizing the Benefits of Ant 646

A.2 Installing and Setting Up Ant 646

A.3 Creating an Ant Project 648
Defining the Ant Project 648

Writing Targets 650

Assigning Tasks to Targets 651
Running an Ant Target 651

A.4 Reviewing Common Ant Tasks 652

The echo Task 652
The tstamp Task 653

The mkdir Task 654

Contentsxvi

The delete Task 654

The copy Task 656
The javac Task 658

A.5 Example: Writing a Simple Ant Project 661

A.6 Using Ant to Build a Web Application 668
Ant Dependencies 669

A.7 Example: Building a Web Application 670

The prepare Target 670
The copy Target 671

The build Target 672

A.8 Using Ant to Create a WAR File 675
The jar Task 676

The manifest Task 678

A.9 Example: Creating a Web Application WAR File 679
The war Target 679

INDEX 683

xvii

Chapter

IntroductionIntroduction

Suppose your company wants to sell products online. You have a database that gives
the price and inventory status of each item. However, your database doesn’t speak
HTTP, the protocol that Web browsers use. Nor does it output HTML, the format
Web browsers need. What can you do? Once users know what they want to buy, how
do you gather that information? You want to customize your site for visitors’ prefer-
ences and interests, but how? You want to keep track of user’s purchases as they shop
at your site, but what techniques are required to implement this behavior? When
your Web site becomes popular, you might want to compress pages to reduce band-
width. How can you do this without causing your site to fail for those visitors whose
browsers don’t support compression? In all these cases, you need a program to act as
the intermediary between the browser and some server-side resource. This book is
about using the Java platform for this type of program.

“Wait a second,” you say. “Didn’t you already write a book about that?” Well, yes.
In May of 2000, Sun Microsystems Press and Prentice Hall released Marty Hall’s sec-
ond book, Core Servlets and JavaServer Pages. It was successful beyond everyone’s
wildest expectations, selling approximately 100,000 copies, getting translated into
Bulgarian, Chinese simplified script, Chinese traditional script, Czech, French, Ger-
man, Hebrew, Japanese, Korean, Polish, Russian, and Spanish, and being chosen by
Amazon.com as one of the top five computer programming books of 2001. What fun!

Since then, use of servlets and JSP has continued to grow at a phenomenal
rate. The Java 2 Platform has become the technology of choice for developing
e-commerce applications, dynamic Web sites, and Web-enabled applications and
service. Servlets and JSP continue to be the foundation of this platform—they pro-
vide the link between Web clients and server-side applications. Virtually all major

Introductionxviii

Web servers for Windows, UNIX (including Linux), Mac OS, VMS, and mainframe
operating systems now support servlet and JSP technology either natively or by
means of a plug-in. With only a small amount of configuration, you can run servlets
and JSP in Microsoft IIS, the Apache Web Server, IBM WebSphere, BEA
WebLogic, Oracle Application Server 10g, and dozens of other servers. Perfor-
mance of both commercial and open-source servlet and JSP engines has improved
significantly.

To no one’s surprise, this field continues to grow at a rapid rate. As a result, we
could no longer cover the technology in a single book. Core Servlets and JavaServer
Pages, Volume 1: Core Technologies, covers the servlet and JSP capabilities that you
are likely to use in almost every real-life project. This book, Volume 2: Advanced
Technologies, covers features that you may use less frequently but are extremely valu-
able in robust applications. For example,

• Deployment descriptor file. Through the proper use of the
deployment descriptor file, web.xml, you can control many aspects of
the Web application behavior, from preloading servlets, to restricting
resource access, to controlling session time-outs.

• Web application security. In any Web application today, security is a
must! The servlet and JSP security model allows you to easily create
login pages and control access to resources.

• Custom tag libraries. Custom tags significantly improve the design
of JSPs. Custom tags allow you to easily develop your own library of
reusable tags specific to your business applications. In addition to
creating your own tags, we cover the Standard Tag Library (JSTL).

• Event handling. With the events framework, you can control
initialization and shutdown of the Web application, recognize
destruction of HTTP sessions, and set application-wide values.

• Servlet and JSP filters. With filters, you can apply many pre- and
post-processing actions. For instance, logging incoming requests,
blocking access, and modifying the servlet or JSP response.

• Apache Struts. This framework greatly enhances the standard
model-view-controller (MVC) architecture available with servlets and
JSPs. More importantly, Apache Struts still remains one of the most
common frameworks used in industry.

Who Should Read This Book

The main audience is developers who are familiar with basic servlet and JSP technol-
ogies, but want to make use of advanced capabilities. As we cover many topics in this
book—the deployment descriptor file, security, listeners, custom tags, JSTL, Struts,

Introduction xix

Ant—you may want to first start with the technologies of most interest, and then later
read the remaining material. Most commercial servlet and JSP Web applications take
advantage of the technologies presented throughout, thus, at some point you may
want to read the complete book.

If you are new to servlets and JSPs, you will want to read Core Servlets and Java-
Server Pages, Volume 1: Core Technologies. In addition to teaching you how to install
and configure a servlet container, Volume 1 provides excellent coverage of the servlet
and JSP specifications. Volume 1 provides the foundation material to this book.

Both books assume that you are familiar with basic Java programming. You don’t
have to be an expert Java developer, but if you know nothing about the Java program-
ming language, this is not the place to start. After all, servlet and JSP technology is an
application of the Java programming language. If you don’t know the language, you
can’t apply it. So, if you know nothing about basic Java development, start with a
good introductory book like Thinking in Java, Core Java, or Core Web Programming,
all from Prentice Hall.

Conventions

Throughout the book, concrete programming constructs or program output are pre-
sented in a monospaced font. For example, when abstractly discussing server-side
programs that use HTTP, we might refer to “HTTP servlets” or just “servlets,” but
when we say HttpServlet we are talking about a specific Java class.

User input is indicated in boldface, and command-line prompts are either generic
(Prompt>) or indicate the operating system to which they apply (DOS>). For
instance, the following indicates that “Some Output” is the result when “java
SomeProgram” is executed on any platform.

Prompt> java SomeProgram
Some Output

URLs, file names, and directory names are presented in a sans serif font. So, for
example, we would say “the StringTokenizer class” (monospaced because we’re
talking about the class name) and “Listing such and such shows SomeFile.java” (sans-
serif because we’re talking about the file name). Paths use forward slashes as in
URLs unless they are specific to the Windows operating system. So, for instance, we
would use a forward slash when saying “look in install_dir/bin” (OS neutral), but use
backslashes when saying “see C:\Windows\Temp” (Windows specific).

Important standard techniques are indicated by specially marked entries, as in the
following example.

Introductionxx

Core Approach

Pay particular attention to items in Core Approach sections. They
indicate techniques that should always or almost always be used.

Core Notes and Core Warnings are called out in a similar manner.

About the Web Site

The book has a companion Web site at http://volume2.coreservlets.com/. This free
site includes:

• Documented source code for all examples shown in the book, which
can be downloaded for unrestricted use.

• Links to all URLs mentioned in the text of the book.
• Up-to-date download sites for servlet and JSP software.
• Information on book discounts.
• Book additions, updates, and news.

http://volume2.coreservlets.com/

xxi

AcknowledgmentsAcknowledgments

Many people helped us with this book. Without their assistance, we would still be on
the second chapter. Chuck Cavaness (Cypress Care, Inc.), Bob Evans (JHU Applied
Physics Laboratory), Randal Hanford (Boeing), Kalman Hazins (JHU Applied Phys-
ics Laboratory), Michael Kolodny (Raba Technologies), Kyong Park (Raba Technolo-
gies), Eric Purcell (Lockheed-Martin), Ylber Ramadani (George Brown College),
and Richard Slywczak (NASA Glenn Research Center) provided valuable technical
feedback on many different chapters. Their recommendations improved the book
considerably.

Teresa Horton spotted our errant commas, awkward sentences, typographical
errors, and grammatical inconsistencies. She improved the result immensely. Vanessa
Moore designed the book layout and produced the final version; she did a great job
despite our many last-minute changes. Greg Doench of Prentice Hall believed in the
concept from before the first edition and encouraged us to write a second edition.
Thanks to all.

Most of all, Marty would like to thank B.J., Lindsay, and Nathan for their patience
and encouragement. Larry would like to thank Lee for her loving and unfailing sup-
port. Yaakov would like to thank the Almighty for shining His grace and mercy upon
him every day; his parents, Mr. Ilia and Mrs. Galina Khaikin, who in the ’80s had the
vision to take him to his first programming class when he was just 13 years old; his
children, Moshe and Esther Miriam, who bring challenge and joy into his life; and of
course his wife, Perel, for her constant loving support and encouragement. God has
blessed us with great families.

xxi i

About the AuthorsAbout the Authors

Marty Hall is president of coreservlets.com, Inc., a small company that provides
training courses and consulting services related to server-side Java technology. He
also teaches Java and Web programming in the Johns Hopkins University part-time
graduate program in Computer Science, where he directs the Distributed Com-
puting and Web Technology concentration areas. Marty is the author of five books
from Prentice Hall and Sun Microsystems Press: the first and second editions of
Core Servlets and JavaServer Pages, More Servlets and JavaServer Pages, and the
first and second editions of Core Web Programming. You can reach Marty at
hall@coreservlets.com.

Larry Brown is a Network and Systems manager at a U.S. Navy Research and
Development laboratory. He is the co-author of the second editions of Core Web
Programming, also from Prentice Hall and Sun Microsystems Press. You can reach
Larry at larry@lmbrown.com.

Yaakov Chaikin is a senior consultant at a software development company
based in Columbia, MD. Besides his day job, he teaches Web development
technologies at the graduate Computer Science program of Loyola College in
Maryland, where he heads the Web Development track. At times, he also helps
his wife with her Web/graphic design business, tbiq.com. Yaakov can be reached
at yaakov.chaikin@gmail.com.

core
SERVLETS AND
JAVASERVER PAGES
VOLUME 2–ADVANCED TECHNOLOGIES

SECOND EDITION

USING AND
DEPLOYING WEB

APPLICATIONS

Topics in This Chapter

• The purpose of Web applications

• The structure of Web applications

• Web application registration

• Development and deployment strategies

• WAR files

• Web application data sharing

3

ChapterChapter 1

Web applications (or “Web apps”) let you bundle a set of servlets, JavaServer Pages
(JSP) pages, tag libraries, Hypertext Markup Language (HTML) documents, images,
style sheets, and other Web content into a single collection that can be used on any
server compatible with the servlet specification. When designed carefully, Web apps
can be moved from server to server or placed at different locations on the same
server, all without making any changes to any of the servlets, JSP pages, or HTML
files in the application.

This capability lets you move complex applications around with a minimum of
effort, streamlining application reuse. In addition, because each Web app has its own
directory structure, sessions, ServletContext, and class loader, using a Web app
simplifies even the initial development because it reduces the amount of coordina-
tion needed among various parts of your overall system.

1.1 Purpose of Web Applications

Web applications help you in three main ways: organizing your resources, portably
deploying your applications, and keeping different applications from interfering with
each other. Let’s look at each benefit in a bit more detail.

Chapter 1 ■ Using and Deploying Web Applications4

Organization
The first advantage of Web applications is that you know where everything goes: Web
apps have a standard location for each type of resource. Individual Java class files
always go in the directory called WEB-INF/classes, JAR files (bundles of Java class
files) always go in WEB-INF/lib, the web.xml configuration file always goes in the
WEB-INF directory, and so on. Files directly accessible to clients (e.g., Web browsers)
go into the top-level directory of your Web app or any subdirectory under the
top-level directory except WEB-INF.

In addition, it’s very common for developers to move from one project to another.
Having a standard way of organizing your application’s resources saves you from hav-
ing to come up with an application structure every time you start a new project and it
also saves a new developer joining your project from having to learn your particular
file organization.

Portability
Because the servlet specification provides a specific file organization, any compli-
ant server should be able to deploy and run your application immediately. This
affords you much freedom in choosing the vendor of your Web server. As long as
a server is compliant, you can pick up your application and, with almost no
changes, deploy and run it on a server from a different vendor, thus avoiding the
dreaded “vendor lock-in.” For example, you could start developing your applica-
tions using a free Web server and move to a more established, vendor-supported
server closer to deployment time.

Separation
Different Web applications deployed on the same server do not interfere with each
other. Each application has its own uniform resource locator (URL) with which it can
be accessed, its own ServletContext object, and so on. Two Web applications
deployed on the same server act as if they were deployed on separate servers.
Neither needs to know about the other.

This further simplifies development and deployment of Web applications. The
developer doesn’t have to be concerned with how the application will integrate
with the existing applications already deployed on the server. Now, as we will see
later in this chapter, there are a few ways in which Web applications can deliber-
ately interact with each other. However, for the most part, they can be developed
independently.

1.2 Structure of Web Applications 5

1.2 Structure of Web Applications

As mentioned earlier, a Web application has a standardized format and is portable
across all compliant Web or application servers. The top-level directory of a Web
application is simply a directory with a name of your choosing. Within that directory,
certain types of content go in designated locations. This section provides details on
the type of content and the locations in which it should be placed.

Locations for Various File Types
Figure 1–1 shows a representative example of a Web application hierarchy. For a
step-by-step example of creating your own Web application, download the app-blank
Web app from http://volume2.coreservlets.com/ and follow the instructions in Sec-
tion 1.6 (Building a Simple Web Application).

Figure 1–1 A representative Web application.

JSP Pages
JSP pages should be placed in the top-level Web application directory or in a subdirec-
tory with any name other than WEB-INF or META-INF. Servers are prohibited from serv-
ing files from WEB-INF or META-INF to the user. When you register a Web application
(see Section 1.3), you tell the server the URL prefix that designates the Web app and
define where the Web app directory is located. It is common, but by no means manda-
tory, to use the name of the main Web application directory as the URL prefix. Once
you register a prefix, JSP pages are then accessed with URLs of the form http://host/

http://volume2.coreservlets.com/

Chapter 1 ■ Using and Deploying Web Applications6

webAppPrefix/filename.jsp (if the pages are in the top-level directory of the Web
application) or http://host/webAppPrefix/subdirectory/filename.jsp (if the pages are
in a subdirectory).

It depends on the server whether a default file such as index.jsp can be accessed
with a URL that specifies only a directory (e.g., http://host/webAppPrefix/) without
the developer first making an entry in the Web app’s WEB-INF/web.xml file. If you
want index.jsp to be the default file name, we strongly recommend that you make an
explicit welcome-file-list entry in your Web app’s web.xml file. For example,
the following web.xml entry specifies that if a URL specifies a directory name but no
file name, the server should try index.jsp first and index.html second. If neither is
found, the result is server specific (e.g., a directory listing).

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

On the use of web.xml, see Chapter 2 (Controlling Web Application Behavior
with web.xml).

HTML Documents, Images, and
Other Regular Web Content

As far as the servlet and JSP engine is concerned, HTML files, GIF and JPEG
images, style sheets, and other Web documents follow exactly the same rules as do
JSP pages. They are placed in exactly the same locations and accessed with URLs of
exactly the same form.

Individual Servlets, Beans, and Helper Classes
Servlets and other .class files are placed either in WEB-INF/classes or in a subdirec-
tory of WEB-INF/classes that matches their package name.

To access one of these servlets, you need to designate the specific URL for it by
specifying the servlet-mapping element in the web.xml deployment descriptor
file that is located within the WEB-INF directory of the Web application. See Section 1.3
(Registering Web Applications with the Server) for details.

There is a second way to access servlets without having to specify a custom URL. It
is with URLs of the form http://host/webAppPrefix/servlet/packageName.Servlet-

Name. Using this way of accessing servlets is fine if you want to try capabilities or
make a quick test case. However, we recommend you do not use this approach for
real-world applications. There are several reasons for this advice. First, if you also
specify a servlet-mapping for this servlet, you will have two different ways of
accessing the same servlet. This side effect could quickly grow to be a maintenance
headache. Second, because declarative security depends on the URL with which

1.2 Structure of Web Applications 7

the resource is accessed, it could also be a potential security hole in your applica-
tion. Third, the user is forced to type in a URL that contains the fully qualified
name of your servlet. This name includes the entire package structure with the
class name. Such URLs look ugly and users find them hard to remember. There-
fore, this approach would score very low on the Web application usability meter.
Fourth, if you ever decide to change the name of your class or to repackage your
classes, the URL must change, forcing you to update every place in your entire
application where this URL was used. Besides the maintenance problem, this will
also confuse users who have already bookmarked the original URL, once again
hurting usability of your application.

In fact, we recommend that you explicitly block the user from accessing the serv-
lets in your Web application without mapping a custom URL. The mapping could be
specified with the help of the servlet-mapping element of web.xml. See web.xml

of the app-blank sample application for an example of this. You can download
app-blank from http://volume2.coreservlets.com/.

Servlets, Beans, and Helper Classes
(Bundled in JAR Files)

If the servlets or other .class files are bundled inside JAR files, then the JAR files
should be placed in WEB-INF/lib. If the classes are in packages, then within the JAR
file they should be in a directory that matches their package name. On most servers,
JAR files can also be shared across multiple Web applications. However, this feature
is not standardized, and the details vary from server to server. On Tomcat, you place
shared JAR files in tomcat_dir/shared/lib.

Deployment Descriptor
The deployment descriptor file, web.xml, should be placed in the WEB-INF subdirec-
tory of the main Web application directory. For details on using web.xml, see Chap-
ter 2 (Controlling Web Application Behavior with web.xml). Note that a few servers
have a global web.xml file that applies to all Web applications. For example, Tomcat
uses tomcat_dir/conf/web.xml for global configuration settings. That file is entirely
server specific; the only standard web.xml file is the per-application one that is
placed within the WEB-INF directory of the Web app.

Tag Library Descriptor Files
Tag Library Descriptor (TLD) files should be placed inside of the WEB-INF directory
or any subdirectory of WEB-INF. However, we recommend that you put them in a tlds
directory within WEB-INF. Grouping them in a common directory (e.g., tlds) simplifies
their management. JSP pages can access TLD files that are in WEB-INF using a
taglib directive as follows:

http://volume2.coreservlets.com/

Chapter 1 ■ Using and Deploying Web Applications8

<%@ taglib uri="/WEB-INF/tlds/myTaglibFile.tld" ...%>

Because it is the server, not the client (e.g., Web browser), that accesses the TLD
file, the prohibition that content inside of WEB-INF is not Web accessible does not
apply.

When deployed inside a JAR file, the .tld file should be placed inside the
META-INF directory or any subdirectory of META-INF. The switch in location from
WEB-INF to META-INF is because JAR files are not Web application archives and thus
don’t contain a WEB-INF directory. See Chapter 7 (Tag Libraries: The Basics) for a
more detailed discussion of TLD files.

Tag Files
Tag files should be placed in the WEB-INF/tags directory or a subdirectory of
WEB-INF/tags. As with TLD files, tag files are still accessible to JSP pages even
though they are located inside of the protected WEB-INF directory. Tag files are also
declared inside a JSP page through the taglib directive. However, instead of uri,
they use the tagdir attribute. For example, if we placed the myTagFile.tag file
inside of the WEB-INF/tags directory of our Web application, the taglib directive of
a JSP page would look something like this:

<%@ taglib tagdir="/WEB-INF/tags" ...%>

In this scenario, the server automatically generates the TLD for the tag files, so no
custom mapping is necessary.

You can also include tag files bundled in a JAR file. The JAR file itself would have
to be placed inside of the WEB-INF/lib directory as we mentioned earlier. However,
within the JAR file, the tag files should be placed inside of the META-INF/tags direc-
tory. In this case, the server does not automatically generate the TLD. You must
declare the tag file and its path within a .tld file. Note that the .tld file can contain
declarations of other types of custom tags as well. See Chapter 7 (Tag Libraries: The
Basics) for a more detailed coverage of tag files.

WAR Manifest File
When you create a WAR file (see Section 1.5), a MANIFEST.MF file is placed in the
META-INF subdirectory. Normally, the jar utility automatically creates MANIFEST.MF

and places it into the META-INF directory, and you ignore it if you unpack the WAR
file. Occasionally, however, you modify MANIFEST.MF explicitly, so it is useful to know
where it is stored.

1.3 Registering Web Applications with the Server 9

1.3 Registering Web Applications
with the Server

As we explained earlier, Web applications are portable. Regardless of the server, you
store files in the same directory structure and access them with URLs of the same
form. For example, Figure 1–2 summarizes the directory structure and URLs that
would be used for a simple Web application called myWebApp. This section illus-
trates how to install and execute this simple Web application on different platforms.

Figure 1–2 Structure of the myWebApp Web application.

Although Web applications themselves are completely portable, the registration
process is server specific. For example, to move the myWebApp application from server
to server, you don’t have to modify anything inside any of the directories shown in Fig-
ure 1–2. However, the location in which the top-level directory (myWebApp in this
case) is placed will vary from server to server. Similarly, you use a server-specific pro-
cess to tell the system that URLs that begin with http://host/myWebApp/ should
apply to the Web application.

This section assumes that you already went through the steps of installing and set-
ting up your server. For information on setting up your server, read your server’s doc-
umentation, see the introductory chapter of the first volume of this book, or (for
Tomcat users) refer to the continually updated Tomcat setup and configuration guide
at http://www.coreservlets.com/. Here, we present a brief example, then give
explicit details for Tomcat in one of the following subsections. For a complete
step-by-step example of developing and deploying a simple Web application on Tom-
cat, see Section 1.6 (Building a Simple Web Application).

As we show in Section 1.4 (Development and Deployment Strategies), the usual
strategy is to build Web applications in a personal development environment and peri-
odically copy them to various deployment directories for testing on different servers. We
recommend that you avoid placing your development directory directly within a server’s

http://host/myWebApp/myPage.html
http://host/myWebApp/myPage.jsp

http://host/myWebApp/myAddress
(custom mapped in web.xml)

http://www.coreservlets.com/

Chapter 1 ■ Using and Deploying Web Applications10

deployment directory—doing so makes it hard to deploy on multiple servers, hard to
develop while a Web application is executing, and hard to organize the files. Instead, use
a separate development directory and deploy by means of one of the strategies outlined
in Section 1.4 (Development and Deployment Strategies). The simplest approach is to
keep a shortcut (Windows) or symbolic link (UNIX/Linux) to the deployment directo-
ries of various servers, and simply copy the entire development directory whenever you
want to deploy. For example, on Windows you can use the right mouse button to drag
the development folder onto the shortcut, release the button, and select Copy.

Registering a Web Application with Tomcat
With Tomcat, creating a Web application consists of creating the appropriate direc-
tory structure and copying that directory structure into the tomcat_dir/webapps

directory. Tomcat will take care of the rest. The ability to deploy a Web app by simply
copying its directory structure into some server directory is usually referred to as
hot-deployment or auto-deployment. The directory within the server that allows this
functionality is referred to as a hot-deploy directory or an auto-deploy directory.
Most, if not all modern Web servers provide this feature. For extra control over the
process, you can modify tomcat_dir/conf/server.xml (a Tomcat-specific file) to refer
to the Web application.

The following steps walk you through what is required to create a Web app that is
accessed by means of URLs that start with http://host/myWebApp/.

1. Create a Web application directory structure with the top-level
directory called myWebApp. Because this is your personal develop-
ment directory structure, it can be located at any place you find conve-
nient. This directory structure should be organized as we showed in
Section 1.2 (Structure of Web Applications). You can reduce the amount
of manual work you have to do in this step by simply downloading the
app-blank Web application from http://volume2.coreservlets.com/. It
already contains all the required directories and a sample web.xml

deployment descriptor. All you have left to do is rename the top-level
directory from app-blank to myWebApp.

However, if you decide to create these directories by hand, here is
what you will need to do. Create a directory called myWebApp any-
where on your system outside of your server’s installation directory.
Right under it, create a directory called WEB-INF. Under WEB-INF, cre-
ate a directory called classes. Create the deployment descriptor file,
web.xml, and place it into the WEB-INF directory. We discuss the
deployment descriptor in detail in Chapter 2 (Controlling Web Appli-
cation Behavior with web.xml). For now, however, just copy the exist-
ing web.xml file from tomcat_dir/webapps/ROOT/WEB-INF or use the
version that is bundled with app-blank.

http://volume2.coreservlets.com/

1.3 Registering Web Applications with the Server 11

Once you have created the proper directory structure, place a
simple JSP page called myPage.jsp into the myWebApp directory.
Put a simple servlet called MyServlet.class into the WEB-INF/classes

directory.
2. Declare the servlet and map it to a URL by editing the web.xml

deployment descriptor file. Unlike JSP files, servlets need to be
explicitly declared. We need to tell the server that it exists by provid-
ing the fully qualified class name of the servlet. In addition, we need
to inform the server which URLs requested by the client should
invoke MyServlet.class. Both of these steps can be accomplished by
adding the following entries in web.xml:

<servlet>
<servlet-name>MyName</servlet-name>
<servlet-class>mypackage.MyServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>MyName</servlet-name>
<url-pattern>/MyAddress</url-pattern>

</servlet-mapping>

The servlet element and its subelements inform the server of the
name we want to use for declaring our servlet as well as the fully qual-
ified name of the servlet class. The servlet-mapping element and
its subelements tell the server which servlet should be invoked when
the client requests a URL that matches the pattern provided by the
value of the url-pattern element. Thus, the servlet declared as
MyName can be invoked with http://host/myWebApp/MyAddress.

3. Copy the myWebApp directory to tomcat_dir/webapps. For exam-
ple, suppose you installed Tomcat in C:\tomcat_dir. You would then copy
the myWebApp directory to the webapps directory, resulting in
C:\tomcat_dir\webapps\myWebApp\HelloWebApp.jsp, C:\tomcat_dir\

webapps\myWebApp\WEB-INF\classes\HelloWebApp.class, and
C:\tomcat_dir\webapps\myWebApp\WEB-INF\web.xml. You could also
wrap the directory inside a WAR file (Section 1.5) and simply drop the
WAR file into C:\tomcat_dir\webapps.

4. Optional: Add a Context entry to tomcat_dir/conf/server.xml.
By default, Tomcat configures your Web application to have a URL
prefix that exactly matches the name of the top-level directory of
your Web app. If you are satisfied with these default settings you can
omit this step. However, if you want a bit more control over the Web
app registration process, you can supply a Context element in
tomcat_dir/conf/server.xml. If you do edit server.xml, be sure to
make a backup copy first; a small syntax error in server.xml can

Chapter 1 ■ Using and Deploying Web Applications12

completely prevent Tomcat from running. However, for the later ver-
sions of Tomcat, the recommended approach is to place the Context
element (and its subelements) by itself into the context.xml file. Then,
place context.xml alongside the web.xml deployment descriptor into
the WEB-INF directory of your Web application.

The Context element has several possible attributes that are docu-
mented at http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/

context.html. For instance, you can decide whether to use cookies or
URL rewriting for session tracking, you can enable or disable servlet
reloading (i.e., monitoring of classes for changes and reloading servlets
whose class file changes on disk), and you can set debugging levels.
However, for basic Web apps, you just need to deal with the two
required attributes: path (the URL prefix) and docBase (the base
installation directory of the Web application, relative to tomcat_dir/

webapps.) This entry should look like the following snippet.

<Context path="/some-web-app" docBase="myWebApp" />

Note that you should not use /examples as the URL prefix; Tomcat
already uses that prefix for a sample Web application.

Core Warning

Do not use /examples as the URL prefix of a Web application in Tomcat.

5. Access the JSP page and the servlet. The URL http://host/
myWebApp/myPage.jsp invokes the JSP page, and http://host/
myWebApp/MyAddress invokes the servlet. During development, you
probably use localhost for the host name. These URLs assume that you
have modified the Tomcat configuration file (tomcat_dir/conf/

server.xml) to use port 80 as recommended in the Tomcat setup and
configuration guide at http://www.coreservlets.com/. If you haven’t
made this change, use http://host:8080/myWebApp/myPage.jsp and
http://host:8080/myWebApp/MyAddress.

Registering a Web Application
with Other Servers

The first two steps described earlier deal with creating the portable part of a Web
application. These steps would be identical for any compliant server. The steps for
the actual registration are specific to Tomcat. However, registering a Web app with

http://www.coreservlets.com/
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/context.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/context.html

1.3 Registering Web Applications with the Server 13

other servers is very similar. In this subsection we summarize the server-specific reg-
istration process for some of the more popular servers today.

BEA WebLogic
Like Tomcat, WebLogic provides an auto-deploy directory used to register and
deploy Web applications. First, if you haven’t done so already, create a new domain
called myDomain. This can be done by running WebLogic’s configuration wizard
config.cmd on Windows or config.sh on UNIX/Linux, both located in the bea/

weblogic_dir/common/bin directory, and following its instructions. Once this is done,
simply copy your entire Web application directory structure (including the top-level
directory) or a WAR file to the bea/user_projects/domains/myDomain/applications

directory. You can also use WebLogic’s Web console application to deploy a Web app.
Log into the console by going to http://localhost:7001/console/. (Note that this
assumes you left the default settings for the port number unchanged and that
you are running the server on your local machine.) In the left pane, expand the
Deployments node and click Web Application Modules. Then, click Deploy a

New Web Application Module. This starts a browser-based deployment wizard.
Simply follow the step-by-step instructions for the wizard. After you deploy the
Web application, the JSP page can be accessed by going to http://local -

host:7001/myWebApp/myPage.jsp and the servlet by going to http://local-

host:7001/myWebApp/MyAddress.

JBoss
In JBoss, registering a Web application is almost as easy as in Tomcat. In fact, by
default, JBoss uses Tomcat as its embedded Web server. To register your Web appli-
cation, start by first renaming your top-level directory myWebApp to myWebApp.war.
Note that you are not actually creating a WAR file, but simply renaming the top-level
directory to end with .war. JBoss insists that to be deployable, not only should WAR
file names end in .war, which is required by the servlet specification, but the
top-level directory name of your Web app should end in .war as well. Once this is
done, copy the myWebApp.war directory to the jboss_dir/server/default/deploy

directory. Assuming you didn’t change any default configuration settings when
installing JBoss, you can invoke the JSP page by going to http://localhost:8080/

myWebApp/myPage.jsp and invoke the servlet by going to http://localhost:8080/

myWebApp/MyAddress. If you do package your Web application into a WAR file, you
should place myWebApp.war into the same JBoss directory to deploy it.

Caucho Resin
To use the auto-deployment feature of Caucho Resin server, copy your entire
Web application directory structure (including the top-level directory) or a WAR
file to the resin_dir/webapps directory. Assuming you didn’t change any default

Chapter 1 ■ Using and Deploying Web Applications14

configuration settings of the server, you can access the JSP page by going to
http://localhost:8080/myWebApp/myPage. jsp and the servlet by going to
http://localhost:8080/myWebApp/MyAddress.

1.4 Development and
Deployment Strategies

Whenever you are ready to start developing a new Web application, follow these
three steps:

1. Create the Web app directory structure. In your development
directory, make a new directory structure that follows the Web applica-
tion structure (including the web.xml file within WEB-INF) discussed ear-
lier in this chapter. The easiest way to do this is to copy and rename the
app-blank application. (Remember, you can download app-blank and all
the other code from the book at http://volume2.coreservlets.com/.)

2. Create your code. Place HTML and JSP pages into the top-level
directory or into subdirectories other than WEB-INF or META-INF. Place
individual Java class files into WEB-INF/classes/subdirectory-match-

ing-package-name. Place JAR files into WEB-INF/lib. Place .tag and
.tagx files into WEB-INF/tags and so on.

3. Deploy the app. Copy the entire Web application directory structure
(including the top-level directory) to your server’s auto-deploy direc-
tory. There are a number of strategies you can use to simplify this third
step, but here are the most popular ones:
• Copying to a shortcut or symbolic link
• Using deployment features specific to an integrated development

environment (IDE)
• Using Ant or a similar tool
• Using an IDE in combination with Ant

If you are just beginning with servlets and JSP, you should probably start with the
first option. Learning how to use Ant or a specific IDE could get in the way of you
getting comfortable with the servlet and JSP technology itself. Note, however, that
we do not list the option of putting your code directly in the server’s deployment
directory. Although this is one of the most common choices among beginners, it
scales so poorly to advanced tasks that we recommend you steer clear of it from the
start.

Details on these four options are given in the following subsections.

http://volume2.coreservlets.com/

1.4 Development and Deployment Strategies 15

Copying to a Shortcut or Symbolic Link
On Windows, go to the directory that is one above the server’s auto-deployment
directory. On Tomcat, this would position you inside the root installation directory,
tomcat_dir. Right-click the auto-deploy directory (e.g., webapps on Tomcat), and
select Copy. Then go to the directory that is one above your top-level development
directory (e.g., one above myWebApp), right-click, and select Paste Shortcut (not just
Paste). Now, whenever you are ready to deploy your Web app, click and hold the
right mouse button on your development directory (e.g., myWebApp), then drag onto
the deployment directory shortcut, and release the button. A pop-up menu will
appear. Select the Copy Here option. Figure 1–3 shows an example setup that sim-
plifies testing of this chapter’s examples on Tomcat, WebLogic, JBoss, and Resin. On
UNIX, you can use symbolic links (created with ln -s) in a manner similar to that
for Windows shortcuts.

Figure 1–3 Using shortcuts to simplify deployment.

An advantage of this approach is that it is simple. Therefore, it is good for begin-
ners who want to concentrate on learning servlets and JSP technology, not deploy-
ment tools or IDEs.

One disadvantage of this approach is that it requires repeated copying if you use
multiple servers. For example, we keep several different servers (Tomcat, Resin, etc.)
on our development system and regularly test the code on all servers. A second dis-
advantage is that this approach copies both the Java source code files and the class
files to the server, although only the class files are needed. This may not matter much
on your desktop server, but when you get to the “real” deployment server, you won’t
want to include the source code files.

Chapter 1 ■ Using and Deploying Web Applications16

Using IDE-Specific Deployment Features
Most servlet- and JSP-savvy development environments (e.g., IBM WebSphere Stu-
dio Application Developer, Sun ONE Studio, NetBeans, Oracle JDeveloper, Borland
JBuilder, Eclipse with MyEclipseIDE or NitroX plug-ins) let you configure your
environment so you can deploy your Web application to a test, development, or pro-
duction server with the click of a button.

With all the clear advantages of IDEs, there are a number of disadvantages as
well. Most worthwhile IDEs have a steep learning curve. This prevents you from
concentrating on real development, at least at the beginning. In addition, it’s very
common for developers to switch projects and for projects to have one specific IDE
everyone must use to have one common development environment on the team. If
you switch, and the new project uses a different IDE for compilation and deploy-
ment than the one you are used to, you will be forced to learn and get used to yet
another IDE. This wastes additional time.

Using Ant, Maven, or a Similar Tool
Developed by the Apache Foundation, ant is a tool similar to the UNIX make util-
ity. However, ant is written in the Java programming language (and thus is portable)
and is touted to be both simpler to use and more powerful than make. Many servlet
and JSP developers use ant for compiling and deploying. The usage of ant is dis-
cussed in the Appendix (Developing Applications with Apache Ant).

For general information on using ant, see http://jakarta.apache.org/ant/manual/.
See http://jakarta.apache.org/tomcat/tomcat-5.5-doc/appdev/processes.html for
specific guidance on using ant with Tomcat.

The main advantage of this approach is flexibility: ant is powerful enough to han-
dle everything from compiling the Java source code to copying files to producing
Web archive (WAR) files (see Section 1.5).

Another tool that is attracting a lot of attention in the Java world is maven.
Maven extends ant, so it is very similar to ant in some respects and drastically dif-
ferent in another. Although maven is just as flexible as ant, its focus is on simplic-
ity of use. It accomplishes this simplicity by utilizing conventions. For example,
maven can compile the code without the developer ever specifying where the code
is located with the project folder. This is because maven assumes, by convention,
that the Java code is located in the src/main/java folder. Of course, this assumption
can be reconfigured, but why bother? Unlike ant, these conventions allow maven
configuration files to be very short and easy to understand. You can learn more
about maven at http://maven.apache.org.

The disadvantage of both ant and maven is the overhead of learning to use them;
there is a steeper learning curve with ant and maven than the previous two tech-
niques in this section. However, the big difference between investing time into learn-
ing a particular IDE and learning ant or maven is that more and more projects are

http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/tomcat/tomcat-5.5-doc/appdev/processes.html
http://maven.apache.org

1.5 The Art of WAR: Bundling Web Applications into WAR Files 17

adapting the usage of ant or maven as their standard, non-IDE-specific deployment
tool, so chances are high that learning ant or maven will pay off in the future.

Using an IDE in Combination with Ant
IDEs help us be more productive by helping us write the code, but restrict us in
terms of portability. ant lets us develop portably, but doesn’t help at all with actual
code writing. What should we do?

One way to bridge the gap a little between the two options is to adapt the use of an
IDE that integrates with ant. This way you can still use your favorite IDE to help
you write code and with the click of a button invoke ant scripts to compile and
deploy your application. Even if your favorite IDE is not integrated with ant (most
modern IDEs are), you can still use this approach, but you’ll have to switch between
the command prompt and your IDE quite a bit.

This approach works really well in a real-world project. The developers get to
keep using their favorite IDEs, which helps them be most productive, and the
project doesn’t suffer from deployment inconsistencies because the compilation and
deployment is done by the same portable ant script. We have participated in
projects where several IDEs were used by different developers on the team working
on the same Web applications; some even used different operating systems for their
environments. The application deployment stayed consistent and the developers
were happy to be able to use whatever made each one personally more productive.
Isn’t a happy developer what this is all about?

1.5 The Art of WAR: Bundling Web
Applications into WAR Files

Web archive (WAR) files provide a convenient way of bundling Web apps in a single
file. Having a single large file instead of many small files makes it easier to transfer
the Web application from server to server.

A WAR file is really just a JAR file with a .war extension, and you use the regular
jar command to create it. For example, to bundle the entire some-web-app applica-
tion into a WAR file named some-web-app.war, you would navigate to the
some-web-app directory and execute the following command:

jar cvf some-web-app.war *

There is no special relationship between the jar command and WAR files. jar is
just one tool among others to use for bundling files together. If you so choose, you
can use WinZip (or tar on UNIX) to do the exact same thing. Just specify the file
name to end with .war instead of .zip.

Chapter 1 ■ Using and Deploying Web Applications18

Of course, you can use other jar options (e.g., to digitally sign classes) with WAR
files just as you can with regular JAR files. For details, see http://java.sun.com/j2se/

1.5.0/docs/tooldocs/windows/jar.html (Windows) or http://java.sun.com/j2se/

1.5.0/docs/tooldocs/solaris/jar.html (UNIX/Linux).

1.6 Building a Simple Web
Application

Well, enough talk. Let’s get down to it and build our first Web application. We’ll be
using Tomcat as our server, but similar steps could be applied to other servers as well.
See Section 1.3 (Registering Web Applications with the Server) for more details.

Here is the outline of steps we’ll be following.

1. Download and rename app-blank to testApp

(http://volume2.coreservlets.com/).
2. Download test.html, test.jsp, and TestServlet.java

(http://volume2.coreservlets.com/).
3. Add test.html, test.jsp to the testApp Web application.
4. Place TestServlet.java into the testApp/WEB-INF/classes/coreservlets

directory.
5. Compile TestServlet.java.
6. Declare TestServlet.class and the URL that will invoke it in web.xml.
7. Copy testApp to tomcat_dir/webapps.
8. Start Tomcat.
9. Access testApp with the URL of the form http://localhost/testApp/

someResource.

The following subsections will walk you through these steps in some detail.

Download and Rename app-blank to testApp
This step is pretty easy. Simply download app-blank.zip from http://volume2.core-

servlets.com/. This file contains the proper directory structure every J2EE-compli-
ant Web application needs. It also contains a starting point for your application’s
deployment descriptor, web.xml, with a servlet mapping that disables the invoker
servlet. We’ll look at servlet mapping in a little more detail when we get to mapping
our TestServlet to a URL. For now, just unzip app-blank.zip to a directory of your
choosing and rename it testApp. Remember to place testApp somewhere on your
system outside of Tomcat directories.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jar.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/jar.html
http://volume2.coreservlets.com/
http://volume2.coreservlets.com/
http://volume2.coreservlets.com/
http://volume2.coreservlets.com/

1.6 Building a Simple Web Application 19

Download test.html, test.jsp,
and TestServlet.java

As in the previous step, these files can be downloaded from http://volume2.coreserv-

lets.com/. You can either download them one by one or bundled into testApp-
Files.zip and unzip them into a directory of your choice.

Add test.html, test.jsp to
the testApp Web Application

Put test.html, test.jsp into the testApp directory, create someDirectory inside the
testApp directory, put a copy of test.html, test.jsp into testApp/someDirectory. The
test.html file contains a static message, and test.jsp contains a scriptlet that outputs
the URL used to access the page. Listings 1.1 and 1.2 show the complete code of
these files.

Listing 1.1 test.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>HTML Test</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1>HTML Test</H1>
Hello.
</BODY></HTML>

Listing 1.2 test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>JSP Test</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1>JSP Test</H1>
URL you used:
<%= request.getRequestURL() %>
</BODY></HTML>

http://volume2.coreservlets.com/
http://volume2.coreservlets.com/

Chapter 1 ■ Using and Deploying Web Applications20

Place TestServlet.java into the testApp/
WEB-INF/classes/coreservlets Directory

TestServlet.java declares that it belongs to the coreservlets package. Therefore, you
have to place TestServlet.java into it before compiling. As with test.jsp, TestServlet.class
contains code that outputs the URL used to access the servlet. See Listing 1.3 for the
complete code of TestServlet.java.

Compile TestServlet.java
Remember that your CLASSPATH should include the servlet application program-
ming interface (API). Tomcat bundles it into the servlet-api.jar file, which is located
in the tomcat_dir/common/lib directory. On Windows you can set your CLASS-
PATH by going to the DOS command prompt and typing the following command:

set CLASSPATH=tomcat_dir\common\lib\servlet-api.jar

Listing 1.3 TestServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Servlet Test</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>Servlet Test</H1>\n" +
 "URL you used: " + request.getRequestURL() + "\n" +
 "</BODY></HTML>");
 }
}

1.6 Building a Simple Web Application 21

On UNIX/Linux compatible systems, you can set the CLASSPATH by opening a
console and typing the following command:

CLASSPATH=tomcat_dir/common/lib/servlet-api.jar

Once the CLASSPATH is set, you can compile TestServlet.java by navigating to the
testApp/WEB-INF/classes/coreservlets directory and typing the following command:

javac TestServlet.java

After compilation, TestServlet.class should reside in the testApp/WEB-INF/classes/

coreservlets directory.

Declare TestServlet.class and the
URL That Will Invoke It in web.xml

Navigate to the testApp/WEB-INF directory and open web.xml with your favorite
Extensible Markup Language (XML) or text editor. To declare TestServlet.class, you
need to add the following lines right after the <!-- Your entries go here. -->
XML comment:

<servlet>
 <servlet-name>Test</servlet-name>
 <servlet-class>coreservlets.TestServlet</servlet-class>
</servlet>

In these few lines, we declared a servlet with the name Test to represent our
TestServlet.class. Note that the <servlet-class> element lists the fully qualified
name of the servlet class, which has the form packageName.className (without
the .class ending.)

Now, we need to tell Tomcat which URLs will invoke the declared Test servlet.
This can be accomplished by adding the following lines to web.xml, right after the
ending </servlet> element:

<servlet-mapping>
 <servlet-name>Test</servlet-name>
 <url-pattern>/test</url-pattern>
</servlet-mapping>

These lines tell Tomcat that a client request to the testApp Web application with
the URL of the form http://host/testApp/test should result in the invocation of the
previously declared Test servlet. See Listing 1.4 for the complete code of web.xml.

Chapter 1 ■ Using and Deploying Web Applications22

Listing 1.4 web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- web.xml from the app-blank template Web app
 from http://courses.coreservlets.com/Course-Materials/.
 Includes two standard elements: welcome-file list
 and a servlet-mapping to disable the invoker servlet.
-->
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Your entries go here. -->
 <servlet>
 <servlet-name>Test</servlet-name>
 <servlet-class>coreservlets.TestServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Test</servlet-name>
 <url-pattern>/test</url-pattern>
 </servlet-mapping>

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server-specific (e.g., a directory
 listing).
 -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

1.6 Building a Simple Web Application 23

See Chapter 2 (Controlling Web Application Behavior with web.xml) for a
detailed discussion of web.xml.

Copy testApp to tomcat_dir/webapps
In this step, we are copying the entire directory structure starting with the top-level
directory (testApp) to the Tomcat’s auto-deploy directory tomcat_dir/webapps. We
can likewise choose to zip testApp into a WAR file (either with the jar command,
WinZip, tar, or a similar bundling tool) and then copy just the WAR file into
tomcat_dir/webapps. Whether you choose to copy testApp in its “exploded” or in its
WAR file version, the end result will be the same.

Start Tomcat
You can start Tomcat by executing tomcat_dir/bin/startup.bat on Windows and
tomcat_dir/bin/startup.sh on UNIX/Linux. Tomcat detects a new directory in its
auto-deploy directory and automatically registers and deploys the testApp Web
application.

Access testApp with the URL of the Form
http://localhost/testApp/someResource

The URLs http://localhost/testApp/test.html and http://localhost/testApp/

someDirectory/test.html retrieve test.html, http://localhost/testApp/test.jsp and
http://localhost/testApp/someDirectory/test.jsp invoke test.jsp, and http://local-

host/testApp/test invokes TestServlet.class.
These URLs assume that you have modified the Tomcat configuration file

(tomcat_dir/conf/server.xml) to use port 80 as recommended in Volume 1 of this
book. If you haven’t made this change, simply replace localhost with localhost:8080

in the URL. See Figures 1–4 through 1–8 for screenshots of what should appear in
your browser as results of accessing these resources.

Chapter 1 ■ Using and Deploying Web Applications24

Figure 1–4 Result of http://localhost/testApp/test.html.

Figure 1–5 Result of http://localhost/testApp/test.jsp.

Figure 1–6 Result of http://localhost/testApp/someDirectory/test.html.

1.7 Sharing Data Among Web Applications 25

Figure 1–7 Result of http://localhost/testApp/someDirectory/test.jsp.

Figure 1–8 Result of http://localhost/testApp/test.

1.7 Sharing Data Among
Web Applications

One of the major purposes of Web applications is to keep data and functionality sep-
arate. Each Web application maintains its own table of sessions and its own servlet
context. Each Web application also uses its own class loader; this behavior eliminates
problems with name conflicts but means that static methods and fields can’t be used
to share data among applications. However, it is still possible to share data with cook-
ies or by using ServletContext objects that are associated with specific URLs.
These approaches are viable options for sharing minimal information between Web
applications, but if you are striving to achieve a lot of sharing, you should consider

Chapter 1 ■ Using and Deploying Web Applications26

keeping the apps as one Web application. The two approaches for sharing data are
summarized next.

• Cookies. Cookies are maintained by the browser, not by the server.
Consequently, cookies can be shared across multiple Web applications
as long as they are set to apply to any path on the server. By default,
the browser sends cookies only to URLs that have the same prefix as
the one from which it first received the cookies. For example, if the
server sends a cookie from the page associated with http://host/
path1/SomeFile.jsp, the browser sends the cookie back to http://host/
path1/SomeOtherFile.jsp and http://host/path1/path2/Anything, but
not to http://host/path3/Anything. Because Web applications always
have unique URL prefixes, this behavior means that default-style
cookies will never be shared between two different Web applications.

However, as described in Chapter 8 of Volume 1, you can use the
setPath method of the Cookie class to change this behavior. Supplying
a value of "/", as shown here, instructs the browser to send the cookie to
all URLs at the host from which the original cookie was received:

Cookie c = new Cookie("name", "value");
c.setMaxAge(...);
c.setPath("/");
response.addCookie(c);

• ServletContext objects associated with a specific URL. In a
servlet, you obtain the Web application’s servlet context by
calling the getServletContext method of the servlet itself
(inherited from GenericServlet). In a JSP page, you use the
predefined application variable. Either way, you get the
servlet context associated with the servlet or JSP page that is
making the request. However, you can also call the getContext
method of ServletContext to obtain a servlet context—not
necessarily your own—associated with a particular URL. This
approach is illustrated here.

ServletContext myContext = getServletContext();
String url = "/someWebAppPrefix";
ServletContext otherContext = myContext.getContext(url);
Object someData = otherContext.getAttribute("someKey");

Neither of these two data-sharing approaches is perfect.
The drawback to cookies is that only limited data can be stored in them. Each

cookie value is a string, and the length of each value is limited to 4 kilobytes. So,
robust data sharing requires a database: You use the cookie value as a key into the
database and store the real data in the database.

1.7 Sharing Data Among Web Applications 27

One drawback to sharing servlet contexts is that you have to know the URL prefix
that the other Web application is using. You normally want the freedom to change a
Web application’s prefix without changing any associated code. Use of the get-
Context method restricts this flexibility. A second drawback is that, for security
reasons, servers are permitted to prohibit access to the ServletContext of cer-
tain Web applications. In such cases, calls to getContext return null. For exam-
ple, in some Tomcat versions, context sharing is enabled by default, whereas in
others you have to explicitly enable it. For instance, in Tomcat 5.5.7 you can add the
attribute crossContext="true" as part of the Context element in tomcat_dir/

conf/context.xml, enabling context sharing as the default behavior for all deployed
applications. Leaving out the crossContext attribute altogether causes Tomcat to
use its default behavior, which is to prohibit sharing of ServletContext between
Web applications.

These two data-sharing approaches are illustrated by the SetSharedInfo and
ShowSharedInfo servlets shown in Listings 1.5 and 1.6. These servlets are mapped
to URLs in the deployment descriptor as shown in Listing 1.7. The SetShared-
Info servlet creates custom entries in the session object and the servlet context. It
also sets two cookies: one with the default path, indicating that the cookie should
apply only to URLs with the same URL prefix as the original request, and one with a
path of "/", indicating that the cookie should apply to all URLs on the host. Finally,
the SetSharedInfo servlet redirects the client to the ShowSharedInfo servlet,
which displays the names of all session attributes, all attributes in the current servlet
context, all attributes in the servlet context that applies to URLs with the prefix
/shareTest1, and all cookies.

Listing 1.5 SetSharedInfo.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SetSharedInfo extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

Chapter 1 ■ Using and Deploying Web Applications28

 HttpSession session = request.getSession(true);
 session.setAttribute("sessionTest", "Session Entry One");
 ServletContext context = getServletContext();
 context.setAttribute("servletContextTest",
 "Servlet Context Entry One");
 Cookie c1 = new Cookie("cookieTest1", "Cookie One");
 c1.setMaxAge(3600); // One hour
 response.addCookie(c1); // Default path
 Cookie c2 = new Cookie("cookieTest2", "Cookie Two");
 c2.setMaxAge(3600); // One hour
 c2.setPath("/"); // Explicit path: all URLs
 response.addCookie(c2);
 String url = request.getContextPath() +
 "/servlet/coreservlets.ShowSharedInfo";
 // In case session tracking is based on URL rewriting.
 url = response.encodeRedirectURL(url);
 response.sendRedirect(url);
 }
}

Listing 1.6 ShowSharedInfo.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowSharedInfo extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Shared Info";
 out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">" +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "\n" +
 " Session:");

Listing 1.5 SetSharedInfo.java (continued)

1.7 Sharing Data Among Web Applications 29

 HttpSession session = request.getSession(true);
 Enumeration attributes = session.getAttributeNames();
 out.println(getAttributeList(attributes));
 out.println(" Current Servlet Context:");
 ServletContext application = getServletContext();
 attributes = application.getAttributeNames();
 out.println(getAttributeList(attributes));
 out.println(" Servlet Context of /shareTest1:");
 application = application.getContext("/shareTest1");
 if (application == null) {
 out.println("Context sharing disabled");
 } else {
 attributes = application.getAttributeNames();
 out.println(getAttributeList(attributes));
 }
 out.println(" Cookies:");
 Cookie[] cookies = request.getCookies();
 if ((cookies == null) || (cookies.length == 0)) {
 out.println(" No cookies found.");
 } else {
 Cookie cookie;
 for(int i=0; i<cookies.length; i++) {
 cookie = cookies[i];
 out.println(" " + cookie.getName());
 }
 }
 out.println(" \n" +
 "\n" +
 "</BODY></HTML>");
 }
private String getAttributeList(Enumeration attributes) {
 StringBuffer list = new StringBuffer(" \n");
 if (!attributes.hasMoreElements()) {
 list.append(" No attributes found.");
 } else {
 while(attributes.hasMoreElements()) {
 list.append(" ");
 list.append(attributes.nextElement());
 list.append("\n");
 }
 }
 list.append(" ");
 return(list.toString());
 }
}

Listing 1.6 ShowSharedInfo.java (continued)

Chapter 1 ■ Using and Deploying Web Applications30

Listing 1.7 web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- web.xml from the app-blank template Web app
 from http://courses.coreservlets.com/Course-Materials/.
 Includes two standard elements: welcome-file list
 and a servlet-mapping to disable the invoker servlet.
-->
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Your entries go here. -->
<servlet>

 <servlet-name>setSharedInfoServlet</servlet-name>
 <servlet-class>coreservlets.SetSharedInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>setSharedInfoServlet</servlet-name>
 <url-pattern>/setSharedInfo</url-pattern>
 </servlet-mapping>
 <servlet>
 <servlet-name>showSharedInfoServlet</servlet-name>
 <servlet-class>coreservlets.ShowSharedInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>showSharedInfoServlet</servlet-name>
 <url-pattern>/showSharedInfo</url-pattern>
 </servlet-mapping>

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server-specific (e.g., a directory
 listing).
 -->

1.7 Sharing Data Among Web Applications 31

When running this example, make sure you invoke the SetSharedInfo servlet of
the shareTest1 application only. After that, invoke the ShowSharedInfo servlet of the
shareTest1 and shareTest2 applications. Do not invoke the ShowSharedInfo servlet
of shareTest2 as this will not illustrate data sharing between the two applications.

Figure 1–9 shows the result after the user visits the SetSharedInfo and Show-
SharedInfo servlets from within the Web application that is assigned /shareTest1
as a URL prefix. The ShowSharedInfo servlet sees:

• The custom session attribute.
• The custom (explicitly created by the SetSharedInfo servlet) and

standard (automatically created by the server) attributes that are
contained in the default servlet context.

• The custom and standard attributes that are contained in the servlet
context that is found by means of getContext("/shareTest1"),
which in this case is the same as the default servlet context.

• The two explicitly created cookies and the system-created cookie used
behind the scenes by the session tracking API.

Figure 1–10 shows the result when the user later visits an identical copy of the
ShowSharedInfo servlet that is installed in a Web application that has /shareTest2
as the URL prefix. The servlet sees:

• The standard attributes that are contained in the default servlet context.
• The custom and standard attributes that are contained in the servlet

context that is found by means of getContext("/shareTest1"),
which in this case is different from the default servlet context.

• Two cookies: the explicitly created one that has its path set to "/" and
the system-created one used behind the scenes for session tracking
(which also uses a custom path of "/").

The servlet does not see:

• Any attributes in its session object.
• Any custom attributes contained in the default servlet context.
• The explicitly created cookie that uses the default path.

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 1.7 web.xml (continued)

Chapter 1 ■ Using and Deploying Web Applications32

Figure 1–9 Result of visiting the SetSharedInfo and ShowSharedInfo servlets from
within the same Web application.

Figure 1–10 Result of visiting the SetSharedInfo servlet in one Web application and
the ShowSharedInfo servlet in a different Web application.

This page intentionally left blank

CONTROLLING
WEB APPLICATION
BEHAVIOR WITH

WEB.XML

Topics in This Chapter

• Understanding the purpose of web.xml

• Customizing URLs

• Turning off default URLs

• Initializing servlets and JSP pages

• Preloading servlets and JSP pages

• Declaring filters

• Designating welcome pages and error pages

• Restricting access to Web resources

• Controlling session timeouts

• Documenting Web applications

• Specifying MIME types

• Locating tag library descriptors

• Configuring JSP pages

• Configuring character encoding

• Declaring event listeners

• Developing for the clustered environment

• Accessing J2EE resources

35

ChapterChapter 2

This chapter describes the makeup of the deployment descriptor file, web.xml, which
is placed in the WEB-INF directory within each Web application.

We’ll summarize all the legal elements here; for the formal specification see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd (for version 2.4 of the servlet
API) or http://java.sun.com/dtd/web-app_2_3.dtd (for version 2.3).

Most of the servlet and JSP examples in this chapter assume that they are part of a
Web application named deployDemo. For details on how to set up and register Web
applications, please see Chapter 1 (Using and Deploying Web Applications).

2.1 Purpose of the Deployment
Descriptor

The deployment descriptor, web.xml, is used to control many facets of a Web appli-
cation. Using web.xml, you can assign custom URLs for invoking servlets, specify ini-
tialization parameters for the entire application as well as for specific servlets, control
session timeouts, declare filters, declare security roles, restrict access to Web
resources based on declared security roles, and so on.

The deployment descriptor is not part of the Java compilation process. Therefore,
changes in web.xml don’t force you to recompile your code. In addition, the separa-
tion between the configuration mechanism, web.xml, and the Java code allows for
the division between the development and deployment roles within the develop-
ment process. The Java developer is relieved of having to know about the specific

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/dtd/web-app_2_3.dtd

Chapter 2 ■ Controlling Web Application Behavior with web.xml36

operational environment while writing code; this facilitates code reuse. By editing
web.xml, the person deploying the application has the power to affect application
behavior without ever having to deal with Java code. For example, a company might
decide to deploy the same Web application at several office locations. Even within
one company, different offices might have slightly different needs and therefore
would need to customize the application. The exact same compiled Java code could
be shipped to all locations. The web.xml file would then be used to customize the
behavior of the application based on the particular office location.

2.2 Defining the Header
and the Root Element

The deployment descriptor, like all XML files, must begin with an XML header. This
header declares the version of XML that is in effect, and gives the character encod-
ing for the file.

The top-level (root) element for the deployment descriptor is web-app. Remem-
ber that XML elements, unlike HTML elements, are case sensitive. Consequently,
Web-App and WEB-APP are not legal; you must use web-app in lowercase.

Core Warning

XML elements are case sensitive.

You must declare an XML Schema instance as part of the web-app element.
This declaration tells the server the version of the servlet specification (e.g., 2.4) that
applies and specifies the XML Schema location that governs the syntax of the rest of
the file. All subelements of web-app are optional.

Thus, the web.xml file should be structured as follows:

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
<!-- Your entries go here. All are optional. -->
</web-app>

Note that http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd is the only URL
that must actually exist, pointing to the location of the XML Schema file. The rest of

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

2.3 The Elements of web.xml 37

the URLs in the declaration of web.xml are namespaces. Namespaces are just
unique identifiers for a particular Schema syntax and could be any unique string. The
server never connects to the namespace URLs.

You can download a blank web.xml file from http://volume2.coreservlets.com/.
Or, if you start your Web applications by copying and renaming app-blank, a legal
web.xml file is already included.

If you are using an earlier version of the servlet specification (e.g., 2.3), instead of
declaring an XML Schema inside of the web-app element, a DOCTYPE declaration
must appear immediately after the header declaration (but before the web-app ele-
ment). Similar to the XML Schema, this declaration tells the server the version of the
servlet specification (e.g., 2.3) that applies and specifies the Document Type Defini-
tion (DTD) that governs the syntax of the rest of the file. However, with version 2.3,
the elements must appear in the DTD-defined order.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <!-- Your entries go here. All are optional. -->
</web-app>

Servers compliant with servlet specification version 2.4 are required to correctly
deploy Web applications compliant with version 2.3. However, if you declare
web.xml with version 2.3, even if the server used for deployment complies with serv-
let specification 2.4, the 2.4-specific features will not be enabled for your Web appli-
cation. For example, the JSP Expression Language Code (introduced in version 2.4)
will be treated as regular text in your JSP pages.

2.3 The Elements of web.xml

In this section we look at the main elements of web.xml that appear directly under
web-app and briefly discuss their purpose. For detailed treatment of each of these
subelements, see later sections in this chapter.

Because there are just a few differences between web.xml version 2.4 and 2.3, we
first discuss the elements of web.xml declared with the latest servlet specification,
version 2.4, and then briefly cover version 2.3.

Even though version 2.4 is the current version of the servlet specification, version
2.3 is still important. A project may have a requirement to run on multiple servers,
some of which are older or only comply with version 2.3. It’s also important for main-
taining preexisting Web apps. For example, the web.xml file in the struts-blank

application that comes with Jakarta Struts uses web.xml version 2.2.

http://volume2.coreservlets.com/

Chapter 2 ■ Controlling Web Application Behavior with web.xml38

Version 2.4
The order of web-app subelements does not matter if you are using version 2.4. This
is one of the major differences between web.xml of version 2.4 and earlier versions.

The following list shows all legal elements that can appear directly within the
web-app element. Remember that all these elements are optional.

• servlet and servlet-mapping. Before you assign initialization
parameters or custom URLs to servlets or JSP pages, you must first
name the servlet or JSP page. You use the servlet element for that
purpose. Once you have declared a servlet (using the servlet
element), you can designate one or more URL patterns that allow the
clients to invoke the servlet. See Section 2.4 (Assigning Names and
Custom URLs).

• context-param. The context-param element declares
application-wide initialization parameters. See Section 2.6 (Initializing
and Preloading Servlets and JSP Pages).

• filter and filter-mapping. The filter element associates a
name with a class that implements the javax.servlet.Filter
interface. Once you have named a filter, you associate it with one or
more servlets or JSP pages by means of the filter-mapping
element. See Section 2.7 (Declaring Filters).

• welcome-file-list. The welcome-file-list element tells the
server what file to use when the server receives URLs that refer to a
directory name but not a file name. See Section 2.8 (Specifying
Welcome Pages).

• error-page. The error-page element lets you designate the
pages that will be displayed when certain HTTP status codes are
returned or when certain types of exceptions are thrown. See Section
2.9 (Designating Pages to Handle Errors).

• security-constraint. The security-constraint element
lets you designate URLs that should be protected from unauthorized
users. It goes hand-in-hand with the login-config element. See
Section 2.10 (Providing Security).

• login-config. You use the login-config element to specify how
the server should authenticate users who attempt to access protected
pages. It goes hand-in-hand with the security-constraint
element. See Section 2.10 (Providing Security).

• security-role. The security-role element must declare
explicit role names used in the role-name subelements of the
auth-constraint element inside every security-constraint
element in web.xml. It could also list security role names that will
appear in the role-name subelements of the security-role-ref

2.3 The Elements of web.xml 39

element inside the servlet element. See Section 2.10 (Providing
Security).

• session-config. If a session has not been accessed for a certain
period of time, the server can throw it away to save memory. You can
explicitly set the timeout for individual session objects by using the
setMaxInactiveInterval method of HttpSession, or you can
use the session-config element to designate a default timeout.
See Section 2.11 (Controlling Session Timeouts).

• icon. The icon element designates the location of either one or two
image files that an IDE can use to represent the Web application. See
Section 2.12 (Documenting Web Applications).

• display-name. The display-name element provides a name that
graphical user interface (GUI) tools might use to label the Web
application. See Section 2.12 (Documenting Web Applications).

• description. The description element gives explanatory text
about the Web application. See Section 2.12 (Documenting Web
Applications).

• mime-mapping. If your Web application has unusual files that
you want to guarantee are assigned certain MIME types, the
mime-mapping element can provide this guarantee. See Section 2.13
(Associating Files with MIME Types).

• jsp-config. The jsp-config element is used to provide
configuration information for the JSP pages in a Web application. It
has two subelements, taglib and jsp-property-group. The
taglib element assigns aliases to Tag Library Descriptor (TLD) files.
This capability lets you change the location of the TLD files without
editing the JSP pages that use those files. The jsp-property-group
element is used to configure property information for a group of files
that match a URL pattern. See Section 2.14 (Configuring JSP Pages).

• locale-encoding-mapping-list. This element sets the default
locale character encodings using one or more locale-encoding-
mapping elements. See Section 2.15 (Configuring Character Encoding).

• listener. The listener element designates an event listener
class. Listener classes are notified when a particular Web application
life-cycle event occurs. For example, it can be notified when the
ServletContext or HttpSession is first initialized or destroyed.
See Section 2.16 (Designating Application Event Listeners).

• distributable. The distributable element tells the system
that it is safe to distribute the Web application across multiple servers
in a cluster. See Section 2.17 (Developing for the Clustered
Environment).

• env-entry. The env-entry element declares the Web application’s
environment entry. See Section 2.18 (J2EE Elements).

Chapter 2 ■ Controlling Web Application Behavior with web.xml40

• ejb-ref. The ejb-ref element declares a reference to the home
interface of an enterprise bean. See Section 2.18 (J2EE Elements).

• ejb-local-ref. The ejb-local-ref element declares a
reference to the local home interface of an enterprise bean. See
Section 2.18 (J2EE Elements).

• service-ref. The service-ref element declares a reference to a
Web service. See Section 2.18 (J2EE Elements).

• resource-ref. The resource-ref element declares a reference
to an external resource used with a resource factory. See Section 2.18
(J2EE Elements).

• resource-env-ref. The resource-env-ref element declares a
reference to an administered object associated with a resource. See
Section 2.18 (J2EE Elements).

• message-destination-ref. The message-destination-ref
element declares a reference to a message destination associated with
a resource. See Section 2.18 (J2EE Elements).

• message-destination. The message-destination element
specifies a logical (e.g., portable) message destination name. See
Section 2.18 (J2EE Elements).

Version 2.3
As we mentioned, web.xml version 2.3 mandates the ordering of elements under
web-app. Servers are not required to enforce this order, but they are permitted to,
and some do so in practice, completely refusing to run Web applications that contain
elements that are out of order. This means that web.xml files that use nonstandard
element ordering are not portable.

Core Approach

If you are using web.xml declared with version 2.3, be sure to correctly
order the elements that appear within web-app.

The following list gives the required ordering of all legal elements that can appear
directly within the web-app element for version 2.3. For example, the list shows that
all servlet elements must appear before any servlet-mapping elements. If
there are any mime-mapping elements, they must go after any servlet and
servlet-mapping elements but before welcome-file-list.

For example, suppose your Web application has several servlets. The natural
approach would be to declare the first servlet and give it a URL, then declare the
second servlet and give it a URL, and so on, as follows:

2.3 The Elements of web.xml 41

<servlet>
<servlet-name>Name1</servlet-name>
<servlet-class>somepackage.Servlet1</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Name1</servlet-name>
<url-pattern>/pattern1</url-pattern>

<servlet-mapping>
...
<servlet>

<servlet-name>NameN</servlet-name>
<servlet-class>somepackage.ServletN</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>NameN</servlet-name>
<url-pattern>/patternN</url-pattern>

<servlet-mapping>

However, if you use web.xml version 2.3 or earlier, you have to first declare all
the servlets, then give them all a URL, as follows.

<servlet>
<servlet-name>Name1</servlet-name>
<servlet-class>somepackage.Servlet1</servlet-class>

</servlet>
...
<servlet>

<servlet-name>NameN</servlet-name>
<servlet-class>somepackage.ServletN</servlet-class>

</servlet>
...
<servlet-mapping>

<servlet-name>Name1</servlet-name>
<url-pattern>/pattern1</url-pattern>

<servlet-mapping>
...
<servlet-mapping>

<servlet-name>NameN</servlet-name>
<url-pattern>/patternN</url-pattern>

<servlet-mapping>

Remember that all these elements are optional, so you can omit any element, but
you cannot place it in a nonstandard location.

The servlet specification version 2.3 defines fewer features than version 2.4, thus
web.xml version 2.3 has fewer elements than version 2.4. However, the purpose and
usage of identically named elements is the same, so we do not list their meaning
again. For details about these elements, please see the relevant sections in this chap-
ter. Also note that the taglib element appears directly under the web-app ele-
ment because there is no jsp-config element in version 2.3.

Chapter 2 ■ Controlling Web Application Behavior with web.xml42

• icon. See Section 2.12 (Documenting Web Applications).
• display-name. See Section 2.12 (Documenting Web Applications).
• description. See Section 2.12 (Documenting Web Applications).
• distributable. See Section 2.6 (Initializing and Preloading

Servlets and JSP Pages).
• context-param. See Section 2.6 (Initializing and Preloading

Servlets and JSP Pages).
• filter. See Section 2.7 (Declaring Filters).
• filter-mapping. See Section 2.7 (Declaring Filters).
• listener. See Section 2.15 (Configuring Character Encoding).
• servlet. See Section 2.4 (Assigning Names and Custom URLs).
• servlet-mapping. See Section 2.4 (Assigning Names and Custom URLs)

and Section 2.6 (Initializing and Preloading Servlets and JSP Pages).
• session-config. See Section 2.11 (Controlling Session Timeouts).
• mime-mapping. See Section 2.13 (Associating Files with MIME Types).
• welcome-file-list. See Section 2.8 (Specifying Welcome Pages).
• error-page. See Section 2.9 (Designating Pages to Handle Errors).
• taglib. See Section 2.14 (Configuring JSP Pages).
• resource-env-ref. See Section 2.18 (J2EE Elements).
• resource-ref. See Section 2.18 (J2EE Elements).
• security-constraint. See Section 2.10 (Providing Security).
• login-config. See Section 2.10 (Providing Security).
• security-role. See Section 2.10 (Providing Security).
• env-entry. See Section 2.18 (J2EE Elements).
• ejb-ref. See Section 2.18 (J2EE Elements).
• ejb-local-ref. See Section 2.18 (J2EE Elements).

2.4 Assigning Names and Custom URLs

One of the most common tasks that you perform in web.xml is declaring names and
mapping custom URLs to your servlets or JSP pages. You use the servlet element
to assign names; you use the servlet-mapping element to associate custom URLs
with the names just assigned.

Assigning Names
To provide initialization parameters, define a custom URL, or assign a logical (porta-
ble) security role to a servlet or JSP page, you must first give the servlet or page a
name. You assign a name by means of the servlet element. The most common for-
mat includes servlet-name and servlet-class subelements (inside the
web-app element), as follows:

2.4 Assigning Names and Custom URLs 43

<servlet>
<servlet-name>Test</servlet-name>
<servlet-class>coreservlets.TestServlet</servlet-class>

</servlet>

This means that the servlet at WEB-INF/classes/coreservlets/TestServlet is now
known by the registered name Test. Giving a servlet a name has the following major
implications: Initialization parameters, custom URL patterns, and other customiza-
tions refer to the servlet by the registered name, not by the class name. We see how
to take advantage of these features later on in this chapter.

For example, Listing 2.1 shows a simple servlet called TestServlet1 that resides
in the coreservlets package. Because the servlet is part of a Web application rooted
in a directory named deployDemo, TestServlet1.class is placed in deployDemo/

WEB-INF/classes/coreservlets. Listing 2.2 shows a portion of the web.xml file that
would be placed in deployDemo/WEB-INF. This web.xml file uses the servlet-name
andservlet-class elements to associate the name Test1 with TestServlet1.class.

Listing 2.1 TestServlet1.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to illustrate servlet naming
 * and custom URLs.
 */

public class TestServlet1 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String uri = request.getRequestURI();
 out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">" + "\n" +
 "<HTML>\n" + "<HEAD><TITLE>" +
 "Test Servlet 1" + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>" + "Servlet Name: Test1" + "</H2>\n" +
 "<H2>URI: " + uri + "</H2>\n" +
 "</BODY></HTML>");
 }
}

Chapter 2 ■ Controlling Web Application Behavior with web.xml44

Defining Custom URLs
To assign a custom URL, you use the servlet-mapping element along with its
servlet-name and url-pattern subelements. The servlet-name element
specifies the name that was assigned to the servlet using the servlet-name subele-
ment of the servlet element; url-pattern describes a URL relative to the Web
application root. The value of the url-pattern element must begin with either a
slash (/) or an asterisk and period combination (*.).

Core Approach

The value of url-pattern must begin with either / or *..

The specification allows you to map a servlet to a particular custom URL. For exam-
ple, here is a simple web.xml excerpt that lets you use the URL http://host/webApp-

Prefix/UrlTest1 to invoke TestServlet1 declared with the name Test1. Figure
2–1 shows the result of invoking TestServlet1 with the exact-matching URL.

<servlet>
<servlet-name>Test1</servlet-name>
<servlet-class>coreservlets.TestServlet1</servlet-class>

</servlet>

Listing 2.2 web.xml (Excerpt showing servlet name)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Register the name "Test1" for TestServlet1. -->
 <servlet>
 <servlet-name>Test1</servlet-name>
 <servlet-class>coreservlets.TestServlet1</servlet-class>
 </servlet>
 <!-- ... -->
</web-app>

2.4 Assigning Names and Custom URLs 45

<servlet-mapping>
<servlet-name>Test1</servlet-name>
<url-pattern>/UrlTest1</url-pattern>

</servlet-mapping>

Figure 2–1 TestServlet1 invoked with http://localhost/deployDemo/UrlTest1.

Exact-Match Patterns
The previous example showed an exact-match pattern: the url-pattern element
specified an address beginning with a slash that did not contain *. The associated
servlet will be invoked when the part of the incoming URL that is after the Web
application prefix (but before the attached GET data, if any) exactly matches the
URL pattern.

Here are a couple more examples using exact matching. Listing 2.3 shows an
excerpt from web.xml declaring and mapping TestServlet2 and TestServlet3
using exact-matching URL patterns. Figures 2–2 and 2–3 show the results of invok-
ing these servlets with their respective URLs.

Listing 2.3 web.xml (Excerpt showing exact matching)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

Chapter 2 ■ Controlling Web Application Behavior with web.xml46

Figure 2–2 TestServlet2 invoked with http://localhost/deployDemo/UrlTest2/.

<!-- Register the name "Test2" for TestServlet2. -->
 <servlet>
 <servlet-name>Test2</servlet-name>
 <servlet-class>coreservlets.TestServlet2</servlet-class>
 </servlet>
 <!-- Use the URL http://host/webAppPrefix/UrlTest2/ -->

<servlet-mapping>
 <servlet-name>Test2</servlet-name>
 <url-pattern>/UrlTest2/</url-pattern>
 </servlet-mapping>

 <!-- Register the name "Test3" for TestServlet3. -->
 <servlet>
 <servlet-name>Test3</servlet-name>
 <servlet-class>coreservlets.TestServlet3</servlet-class>
 </servlet>
 <!-- Use the URL http://host/webAppPrefix/UrlTest3.asp -->

<servlet-mapping>
 <servlet-name>Test3</servlet-name>
 <url-pattern>/UrlTest3.asp</url-pattern>
 </servlet-mapping>

<!-- ... -->
</web-app>

Listing 2.3 web.xml (Excerpt showing exact matching) (continued)

2.4 Assigning Names and Custom URLs 47

Figure 2–3 TestServlet3 invoked with http://localhost/deployDemo/

UrlTest3.asp.

Multimapping Patterns
In the majority of cases, you want to assign one URL to each servlet. Once in a while,
however, you want multiple URLs to invoke the same servlet. There are two ways
you can accomplish this multimapping:

• By giving a url-pattern of /directoryName/*, you can specify
that all URLs of the form http://host/webAppPrefix/directoryName/

blah are handled by the designated servlet.
• By giving a url-pattern of *.foo, you can specify that all URLs of

the form http://host/webAppPrefix/.../blah.foo are handled by the
designated servlet.

Details follow.
Here is an excerpt from web.xml showing a mapping that lets you use URLs like

http://host/webAppPrefix/UrlTest4, http://host/webAppPrefix/UrlTest4/ (note the
slash at the end), h ttp://host/webAppPrefix/Ur lTest4/foo/bar to invoke
TestServlet4 declared with the name Test4. Figures 2–4, 2–5, and 2–6 show the
results of invoking TestServlet4 with these URLs, respectively.

<servlet>
<servlet-name>Test4</servlet-name>
<servlet-class>coreservlets.TestServlet4</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Test4</servlet-name>
<url-pattern>/UrlTest4/*</url-pattern>

</servlet-mapping>

Chapter 2 ■ Controlling Web Application Behavior with web.xml48

Figure 2–4 TestServlet4 invoked with http://localhost/deployDemo/UrlTest4.

Figure 2–5 TestServlet4 invoked with http://localhost/deployDemo/UrlTest4/.

Figure 2–6 TestServlet4 invoked with http://localhost/deployDemo/UrlTest4/

foo/bar.

2.4 Assigning Names and Custom URLs 49

Likewise, you can use * if you want all URLs ending with a certain extension to
invoke a particular servlet. For example, here is an excerpt from web.xml that lets
you use URLs like http://host/webAppPrefix/foo/bar/baz.urlTest5, http://host/

webAppPrefix/foo.urlTest5 to invoke TestServlet5 declared with the name
Test5. Figures 2–7 and 2–8 show the results of invoking TestServlet5 with these
URLs, respectively.

<servlet>
<servlet-name>Test5</servlet-name>
<servlet-class>coreservlets.TestServlet5</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Test5</servlet-name>
<url-pattern>*.urlTest5</url-pattern>

</servlet-mapping>

Figure 2–7 TestServlet5 invoked with http://localhost/deployDemo/foo/bar/

baz.urlTest5.

Figure 2–8 TestServlet5 invoked with http://localhost/deployDemo/

foo.urlTest5.

Chapter 2 ■ Controlling Web Application Behavior with web.xml50

Matching Overlapping Patterns
When mapping a servlet to a URL, the specification does not allow the same value of
url-pattern to appear twice within the same web.xml file. Thus, there can never
be an overlap between two patterns that map exact matches. However, if one or more
servlet mappings use “*”, an overlap could occur.

Compliant servers are required to use the following rules to resolve these overlaps.

• Exact matches are handled first. Thus, if /foo/bar and /foo/*
were both url-pattern entries, the first would take precedence for
a request URL of http://host/webAppPrefix/foo/bar. Similarly,
/foo/bar.html would win over *.html for an incoming URL of
http://host/webAppPrefix/foo/bar.html.

• Directory mappings are preferred over extension mappings.
Thus, if /foo/* and *.html were both url-pattern entries, the
first would take precedence for a request URL of http://host/
webAppPrefix/foo/bar.html.

• For overlapping directory mappings, the longest path is
preferred. Thus, if /foo/bar/* and /foo/* were both
url-pattern entries, the first would take precedence for a request
URL of http://host/webAppPrefix/foo/bar/baz.html.

Naming JSP Pages
Because JSP pages get translated into servlets, it is natural to expect that you can
name JSP pages just as you can name servlets. After all, JSP pages might benefit from
initialization parameters, security settings, or custom URLs, just as regular servlets
do. Although it is true that JSP pages are really servlets behind the scenes, there is
one key difference: You don’t know the actual class name of JSP pages (because the
system picks the name). So, to name JSP pages, you substitute the jsp-file ele-
ment for the servlet-class element, as follows:

<servlet>
<servlet-name>PageName</servlet-name>
<jsp-file>/WEB-INF/jspPages/TestPage.jsp</jsp-file>

</servlet>

The jsp-file element specifies the location of the JSP page relative to the Web
application root directory. Although anything placed inside of WEB-INF is protected
from direct access, it is the server, not the client, that will be resolving this path, so
you are allowed to specify a location inside WEB-INF.

Generally, JSP pages do not need to be declared inside web.xml. They can be
invoked like any other static resource (e.g., somePage.html), provided you place
them outside of WEB-INF. However, there are times when you might still want to
declare a name for a JSP page. Declaring a name for a JSP page allows you to provide

2.4 Assigning Names and Custom URLs 51

a name to use with customization settings (e.g., initialization parameters and security
settings) and so that you can change the URL that invokes the JSP page (e.g., so that
multiple URLs get handled by the same page or to remove the .jsp extension from the
URL). However, when setting initialization parameters, remember that JSP pages read
initialization parameters by using the jspInit method, not the init method. See
Section 2.6 (Initializing and Preloading Servlets and JSP Pages) for details.

For example, Listing 2.4 is a simple JSP page named TestPage.jsp that just prints
out the local part of the URL used to invoke it. Listing 2.5 shows a portion of the
web.xml file (i.e., deployDemo/WEB-INF/web.xml) used to assign a registered name
of PageName and then to associate that registered name with URLs of the form
http://host/webAppPrefix/UrlTest7/anything. Figure 2–9 shows the result for the
URL http://localhost/deployDemo/UrlTest7/foo.

Listing 2.4 TestPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>JSP Test Page</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>TestPage.jsp

 URI: <%= request.getRequestURI() %></H2>
</BODY></HTML>

Listing 2.5 web.xml (Excerpt illustrating the naming of JSP pages)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Register the name "PageName" for TestPage.jsp -->
<servlet>

 <servlet-name>PageName</servlet-name>
 <jsp-file>/WEB-INF/jspPages/TestPage.jsp</jsp-file>
 </servlet>
 <!-- Use the URL http://host/webAppPrefix/UrlTest7/foo -->
 <servlet-mapping>
 <servlet-name>PageName</servlet-name>
 <url-pattern>/UrlTest7/*</url-pattern>
 </servlet-mapping>

<!-- ... ->
</web-app>

Chapter 2 ■ Controlling Web Application Behavior with web.xml52

Figure 2–9 TestPage.jsp invoked with http://localhost/deployDemo/UrlTest7/foo.

2.5 Disabling the Invoker Servlet

One reason for setting up a custom URL for a servlet or JSP page is so that you can
register initialization parameters to be read from the init (servlets) or jspInit
(JSP pages) methods. However, as discussed in Section 2.6 (Initializing and Preload-
ing Servlets and JSP Pages), the initialization parameters are available only when the
servlet or JSP page is accessed by means of a custom URL pattern, not when it is
accessed with the default URL of http://host/webAppPrefix/servlet/package.Servlet-

Class. Consequently, you might want to turn off the default URL so that nobody acci-
dentally calls the uninitialized servlet. This process is sometimes known as disabling
the invoker servlet, because most servers have a standard servlet that is registered
with the default servlet URLs and simply invokes the real servlet.

There are two main approaches for disabling the default URL:

• Remapping the /servlet/ pattern in each Web application.
• Globally turning off the invoker servlet.

It is important to note that, although remapping the /servlet/ pattern in each Web
application is more work than disabling the invoker servlet in one fell swoop, remap-
ping can be done in a completely portable manner. In contrast, the process for glo-
bally disabling the invoker servlet is entirely server specific. The first following
subsection discusses the per-Web-application strategy of remapping the /servlet/
URL pattern. The next subsection provides details on globally disabling the invoker
servlet in Tomcat.

2.5 Disabling the Invoker Servlet 53

Remapping the /servlet/ URL Pattern
It is quite straightforward to disable processing of URLs that begin with http://host/
webAppPrefix/servlet/ in a particular Web application. All you need to do is create an
error message servlet and use the url-pattern element discussed in the previous
section to direct all matching requests to that servlet. Simply use

<url-pattern>/servlet/*</url-pattern>

as the pattern within the servlet-mapping element.
For example, Listing 2.6 shows a portion of the deployment descriptor that associ-

ates the NoInvokerServlet servlet (Listing 2.7) with all URLs that begin with
http://host/webAppPrefix/servlet/. Figure 2–10 illustrates an attempt to access the
TestServlet1 servlet (Listing 2.1 in Section 2.4) with the default URL.

Listing 2.6 web.xml (Excerpt showing how to disable default URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Disable the invoker servlet. -->
<servlet>

 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

<!-- ... -->
</web-app>

Chapter 2 ■ Controlling Web Application Behavior with web.xml54

Listing 2.7 NoInvokerServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to give error messages to
 * users who try to access default servlet URLs
 * (i.e., http://host/webAppPrefix/servlet/ServletName)
 * in Web applications that have disabled this
 * behavior.
 */

public class NoInvokerServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Invoker Servlet Disabled.";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>" + title + "</H2>\n" +
 "Sorry, access to servlets by means of\n" +
 "URLs that begin with\n" +
 "http://host/webAppPrefix/servlet/\n" +
 "has been disabled.\n" +
 "</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

2.5 Disabling the Invoker Servlet 55

Figure 2–10 Unsuccessful attempt to invoke the TestServlet1 servlet by means of the
default URL. The invoker servlet is disabled.

Globally Disabling the Invoker: Tomcat
Tomcat 5 turns off the invoker servlet by default. It does this in the same way that we
turned it off in the previous section: by means of a url-mapping element in
web.xml. The difference is that Tomcat uses a server-specific global web.xml file that
is stored in install_dir/conf, whereas we used the standard web.xml file that is stored
in the WEB-INF directory of each Web application.

Thus, to turn off the invoker servlet in Tomcat 5, you simply comment out the
/servlet/* URL mapping entry in install_dir/conf/web.xml, as shown here.

<!--
<servlet-mapping>

<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>
-->

Again, note that this entry is in the Tomcat-specific web.xml file that is stored in
install_dir/conf, not the standard web.xml file that is stored in the WEB-INF directory
of each Web application.

Figure 2–11 shows the result when the TestServlet1 (Listing 2.1 from Section
2.4) is invoked with the default URL in a version of Tomcat that has the invoker serv-
let globally disabled. The default URL fails.

Please see http://www.coreservlets.com/ for more information on setting up
Tomcat.

http://www.coreservlets.com/

Chapter 2 ■ Controlling Web Application Behavior with web.xml56

Figure 2–11 TestServlet1 when invoked with the default URL in a server that has
globally disabled the invoker servlet.

2.6 Initializing and Preloading
Servlets and JSP Pages

This section discusses methods for controlling the startup behavior of servlets and
JSP pages. In particular, it explains how you can assign initialization parameters and
how you can change the point in the server life cycle at which servlets and JSP pages
are loaded.

Assigning Servlet Initialization Parameters
You provide servlets with initialization parameters by means of the init-param ele-
ment, which has param-name and param-value subelements. For instance, in the
following example, if the InitServlet servlet is accessed by means of a URL in
the fo rm of h ttp ://hos t/webAppPref i x /s how I n i tVa lu es , i t co u ld ca l l
getServletConfig().getInitParameter("firstName") from its init
method to get "Larry" and could call getServletConfig().getInit-
Parameter("emailAddress") to get "ellison@microsoft.com".

2.6 Initializing and Preloading Servlets and JSP Pages 57

<servlet>
<servlet-name>InitTest</servlet-name>
<servlet-class>coreservlets.InitServlet</servlet-class>
<init-param>

<param-name>firstName</param-name>
<param-value>Larry</param-value>

</init-param>
<init-param>

<param-name>emailAddress</param-name>
<param-value>ellison@microsoft.com</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>InitTest</servlet-name>
<url-pattern>/showInitValues</url-pattern>

</servlet-mapping>

There are a few common gotchas that are worth keeping in mind when dealing
with initialization parameters:

• Return values. The return value of getInitParameter is always a
String. So, for integer parameters you might use
Integer.parseInt to obtain an int.

• Nonexistent values. If the key passed into the getInitParameter
method does not appear inside the servlet’s init-param
declarations, null will be returned. Because someone other than the
Java developer can modify web.xml, you should always check for null
inside your code.

• Initialization in JSP. JSP pages use jspInit, not init. JSP pages
also require use of the jsp-file element in place of servlet-class,
as described in Section 2.4 (Assigning Names and Custom URLs).
Initializing JSP pages is discussed in the next subsection.

• Default URLs. Initialization parameters are only available when
servlets are accessed through custom URL patterns associated with
their registered names. So, in this example, the firstName and
emailAddress init parameters would be available when you used the
URL http://host/webAppPrefix/showInitValues, but not when you used
the URL http://host/webAppPrefix/servlet/coreservlets.InitServlet.

Core Warning

Initialization parameters are not available in servlets that are accessed by
their default URL.

Chapter 2 ■ Controlling Web Application Behavior with web.xml58

For example, Listing 2.8 shows a simple servlet called InitServlet that
uses the init method to set the firstName and emailAddress fields. Listing
2.9 shows the excerpt from the web.xml file that assigns the custom URL pattern
/showInitValues to the servlet. Figures 2–12 and 2–13 show the results when the
servlet is accessed with the custom URL (correct) and the default URL (incorrect),
respectively.

It is simply too hard to remember which URL works and which doesn’t. In real
Web apps, disable the invoker servlet so that there is only one URL for each servlet.
Reserve the invoker servlet exclusively for quick tests of capabilities in separate
(test-only) Web applications.

Listing 2.8 InitServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to illustrate servlet
 * initialization parameters.
 */

public class InitServlet extends HttpServlet {
 private String firstName = "First name is missing.";
 private String emailAddress = "Email address is missing";

 public void init() {
 ServletConfig config = getServletConfig();
 if (config.getInitParameter("firstName") != null) {
 firstName = config.getInitParameter("firstName");
 }
 if (config.getInitParameter("emailAddress") != null) {
 emailAddress = config.getInitParameter("emailAddress");
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String uri = request.getRequestURI();

2.6 Initializing and Preloading Servlets and JSP Pages 59

 out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">" + "\n" +
 "<HTML>\n" + "<HEAD><TITLE>" +
 "Init Servlet" + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>Init Parameters:</H2>\n" +
 "\n" +
 "First name: " + firstName + "\n" +
 "Email address: " + emailAddress + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

Listing 2.9 web.xml (Excerpt illustrating initialization parameters)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <servlet>
 <servlet-name>InitTest</servlet-name>
 <servlet-class>coreservlets.InitServlet</servlet-class>
 <init-param>
 <param-name>firstName</param-name>
 <param-value>Larry</param-value>
 </init-param>
 <init-param>
 <param-name>emailAddress</param-name>
 <param-value>ellison@microsoft.com</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>InitTest</servlet-name>
 <url-pattern>/showInitValues</url-pattern>
 </servlet-mapping>

<!-- ... -->
</web-app>

Listing 2.8 InitServlet.java (continued)

Chapter 2 ■ Controlling Web Application Behavior with web.xml60

Figure 2–12 The InitServlet when correctly accessed with its custom URL.

Figure 2–13 The InitServlet when incorrectly accessed with the default URL. Disable
the invoker servlet to avoid this problem.

Assigning JSP Initialization Parameters
Although the servlet specification provides a mechanism for assigning JSP initializa-
tion parameters, in practice, this is discouraged and thus very rare. A much better
approach to loading initialization parameters is to use the Model-View-Controller
(MVC) architecture and do the initialization inside the init method of a servlet.

Providing initialization parameters to JSP pages differs in three ways from provid-
ing them to servlets.

1. You use jsp-file instead of servlet-class. The servlet
element of the WEB-INF/web.xml file would look something like this:

<servlet>
<servlet-name>InitPage</servlet-name>
<jsp-file>/InitPage.jsp</jsp-file>

2.6 Initializing and Preloading Servlets and JSP Pages 61

<init-param>
<param-name>...</param-name>
<param-value>...</param-value>

</init-param>
...

</servlet>

2. You should assign the original URL of the JSP page as its cus-
tom URL pattern. With servlets, it is moderately common to use a
custom URL pattern that differs from the name of the servlet. There
wouldn’t be anything technically illegal in doing the same for JSP pages
as well. However, many users dislike URLs that appear to refer to regu-
lar servlets when used for JSP pages. Furthermore, if the JSP page is in
a directory for which the server provides a directory listing (e.g., a direc-
tory with neither an index.html nor an index.jsp file), the user might get
a link to the JSP page, click it, and thus accidentally invoke the uninitial-
ized page. Therefore, a good strategy is to use url-pattern (Section
2.4) to associate the original URL of the JSP page with the registered
servlet name. That way, clients can use the normal name for the JSP
page but still invoke the customized version. For example, given
the servlet definition from item 1, you might use the following
servlet-mapping definition:

<servlet-mapping>
<servlet-name>InitPage</servlet-name>
<url-pattern>/InitPage.jsp</url-pattern>

</servlet-mapping>

3. The JSP page uses jspInit, not init. The servlet that is auto-
matically built from a JSP page may already be using the init
method. Consequently, it is illegal to use a JSP declaration to provide
an init method. You must name the method jspInit instead.

To illustrate the process of initializing JSP pages, Listing 2.10 shows a JSP page
called InitPage.jsp that contains a jspInit method and is placed at the top level of the
deployDemo Web page hierarchy. Normally, a URL of http://localhost/deployDemo/

InitPage.jsp would invoke a version of the page that has no access to initialization
parameters and would thus return null for the firstName and emailAddress
parameters. However, the web.xml file (Listing 2.11) assigns a registered name and
then associates that registered name with the URL pattern /InitPage.jsp. As Figure
2–14 shows, the result is that the normal URL for the JSP page now invokes the ver-
sion of the page that has access to the initialization parameters.

Chapter 2 ■ Controlling Web Application Behavior with web.xml62

Listing 2.10 InitPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>JSP Init Test</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Init Parameters:</H2>

 First name: <%= firstName %>
 Email address: <%= emailAddress %>

</BODY></HTML>
<%!
private String firstName = "First name is missing.";
private String emailAddress = "Email address is missing";

public void jspInit() {
 ServletConfig config = getServletConfig();
 if (config.getInitParameter("firstName") != null) {
 firstName = config.getInitParameter("firstName");
 }
 if (config.getInitParameter("emailAddress") != null) {
 emailAddress = config.getInitParameter("emailAddress");
 }
}
%>

Listing 2.11
web.xml (Excerpt showing init params
for JSP pages)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <servlet>
 <servlet-name>InitPage</servlet-name>
 <jsp-file>/InitPage.jsp</jsp-file>
 <init-param>
 <param-name>firstName</param-name>
 <param-value>Bill</param-value>
 </init-param>

2.6 Initializing and Preloading Servlets and JSP Pages 63

Figure 2–14 Mapping a JSP page’s original URL to the registered custom URL pattern
prevents users from accidentally accessing the uninitialized version.

Supplying Application-Wide
Initialization Parameters

Normally, you assign initialization parameters to individual servlets or JSP pages. The
designated servlet or JSP page reads the parameters by means of the getInit-
Parameter method of ServletConfig. However, in some situations you want to
supply system-wide initialization parameters that can be read by any servlet or JSP
page by means of the getInitParameter method of ServletContext.

You use the context-param element to declare these system-wide initialization
va lue s . T he context-param e le ment shou ld conta in param-name ,
param-value, and, optionally, description subelements, as shown here.

 <init-param>
 <param-name>emailAddress</param-name>
 <param-value>gates@oracle.com</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>InitPage</servlet-name>
 <url-pattern>/InitPage.jsp</url-pattern>
 </servlet-mapping>

<!-- ... -->
</web-app>

Listing 2.11
web.xml (Excerpt showing init params
for JSP pages) (continued)

Chapter 2 ■ Controlling Web Application Behavior with web.xml64

<context-param>
<param-name>support-email</param-name>
<param-value>blackhole@mycompany.com</param-value>

</context-param>

Loading Servlets When the Server Starts
Suppose the LoadInitServlet has an init method that reads an initialization
parameter, companyName, and stores it in the ServletContext object. The
doGet method of the LoadInitServlet retrieves companyName from the Serv-
letContext and displays it to the client. After the LoadInitServlet has been
invoked at least once, two different JSP pages, ShowIni tLoaded1. jsp and
ShowInitLoaded2.jsp, are invoked with ${companyName} somewhere on both
pages. The JSP pages will retrieve the previously stored companyName from the
ServletContext and display it to the client. In this case, everything works as we
wo u ld e x p e c t i t t o . F o r the co m pl e te c od e o f L oad I n i tSe rv l e t . j ava ,
ShowInitLoaded1.jsp, and ShowInitLoaded2.jsp, see Listings 2.12 through 2.14,
respectively. Figures 2–15 through 2–17 show the result of invoking LoadInit-
Servlet (with <url-pattern>/showLoadInit</url-pattern>),
ShowInitLoaded1.jsp, and ShowInitLoaded2.jsp, respectively.

Listing 2.12 LoadInitServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to illustrate loading init-param
 * into ServletContext.
 */

public class LoadInitServlet extends HttpServlet {
 private String companyName = "Company name is missing";

 public void init() {
 ServletConfig config = getServletConfig();
 if (config.getInitParameter("companyName") != null) {
 companyName = config.getInitParameter("companyName");
 }
 ServletContext context = getServletContext();
 context.setAttribute("companyName", companyName);
 }

2.6 Initializing and Preloading Servlets and JSP Pages 65

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">" + "\n" +
 "<HTML>\n" + "<HEAD><TITLE>" +
 "Load Init Servlet" + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>Init Parameter:</H2>\n" +
 "Company name: " +
 getServletContext().getAttribute("companyName") +
 "\n" + "</BODY></HTML>");
 }
}

Listing 2.13 ShowInitLoaded1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Current Company Name</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Welcome to ${companyName}!</H2>
We changed our name to serve you better!
</BODY></HTML>

Listing 2.14 ShowInitLoaded2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Init Parameter from ServletContext</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Init Parameter: ${companyName}</H2>
</BODY></HTML>

Listing 2.12 LoadInitServlet.java (continued)

Chapter 2 ■ Controlling Web Application Behavior with web.xml66

Figure 2–15 Result of invoking LoadInitServlet with http://localhost/deployDemo/

showLoadInit. The servlet loads a company name using getInitParameter, stores it in
ServletContext, and displays it in the doGet method.

Figure 2–16 Result of invoking http://localhost/deployDemo/ShowInitLoaded1.jsp.
This page retrieves the name of the company previously stored in the ServletContext
by the LoadInitServlet.

Figure 2–17 Result of invoking http://localhost/deployDemo/ShowInitLoaded2.jsp.
This page retrieves the name of the company previously stored in the ServletContext
by the LoadInitServlet.

2.6 Initializing and Preloading Servlets and JSP Pages 67

But what happens if we reboot the server and then the JSP pages are accessed before
the LoadInitServlet is invoked? At this point, because the LoadInitServlet has
not yet been loaded into memory, its init method has not been called, and the
attribute companyName is not present in the ServletContext. The JSP pages
would therefore not produce expected results. Figure 2–18 shows the result of
invoking ShowInitLoaded1.jsp after rebooting the server but before invoking the
LoadInitServlet.

Figure 2–18 Result of invoking http://localhost/deployDemo/ShowInitLoaded1.jsp

after rebooting the server but before invoking the LoadInitServlet. The company name
was never loaded into the ServletContext, thus the page shows blank for the name of
the company.

We could easily solve the problem by declaring companyName in con-
text-param, but then we would have Java code in the JSP pages and we would
have to repeat the check for null everywhere. So, we use load-on-startup to
guarantee that the LoadInitServlet’s init method is run when the Web appli-
cation is first loaded as follows:

<servlet>
 <servlet-name>LoadInit</servlet-name>
 <servlet-class>
 coreservlets.LoadInitServlet
 </servlet-class>
 <init-param>
 <param-name>companyName</param-name>
 <param-value>Doozilch Daley Inc.</param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
</servlet>

At server startup, the LoadInitServlet will be loaded into memory and its
init method called. If we invoke ShowInitLoad1.jsp as the very first thing at server
reboot, it will now show the name of the company because the LoadInitServlet’s
init method is guaranteed to have been called.

Chapter 2 ■ Controlling Web Application Behavior with web.xml68

You can have more than one servlet or JSP page configured to load at server star-
tup. The integer 0 in the load-on-startup’s element body tells the server that
this servlet should be loaded into memory at server startup before any other servlet
or JSP page. The idea is that the server should load lower numbered servlets or JSP
pages before higher numbered ones. For example, the following servlet entries
(placed within the web-app element in the web.xml file that goes in the WEB-INF

directory of your Web application) would instruct the server to first load and initialize
the SearchServlet, then load and initialize the servlet resulting from the
index.jsp file that is in the Web app’s results directory.

<servlet>
<servlet-name>Search</servlet-name>
<servlet-class>myPackage.SearchServlet</servlet-class>
<load-on-startup>0</load-on-startup>

</servlet>
<servlet>

<servlet-name>Results</servlet-name>
<jsp-file>/results/index.jsp</jsp-file>
<load-on-startup>1</load-on-startup>

</servlet>

If you specify two different servlets with the same load-on-startup number,
the server is free to choose which of the same-numbered servlets is loaded first.
Loading the servlet at startup is not guaranteed if you specify a negative number in
the body of the load-on-startup element.

The load-on-startup feature is also convenient if the init (servlet) or
jspInit (JSP) method takes a long time to execute. For example, suppose that the
init or jspInit method looks up constants from a database or ResourceBundle.
In such a case, the default behavior of loading the servlet at the time of the first client
request results in a significant delay for that first client. So, you can use the
load-on-startup subelement of servlet to stipulate that the server load the
servlet when the server first starts. However, a much better approach to this problem
is to place the slow-loading initialization into the ServletContextListener’s
contextInitialized method. This method is guaranteed to be called by the con-
tainer before any other resources are loaded. For more details on listeners, please
see Chapter 6 (The Application Events Framework).

2.7 Declaring Filters

Filters are discussed in detail in Chapter 5 (Servlet and JSP Filters), but the basic
idea is that filters can intercept and modify the request coming into or the response
going out of a servlet or JSP page. Before a servlet or JSP page is executed, the
doFilter method of the first associated filter is executed. When that filter calls

2.7 Declaring Filters 69

doFilter on its FilterChain object, the next filter in the chain is executed. If
there is no other filter, the servlet or JSP page itself is executed. Filters have full
access to the incoming ServletRequest object, so they can check the client’s host-
name, look for incoming cookies, and so forth. To access the output of the servlet or
JSP page, a filter can wrap the response object inside a stand-in object that, for exam-
ple, accumulates the output into a buffer. After the call to the doFilter method of
the FilterChain object, the filter can examine the buffer, modify it if necessary, and
then pass it on to the client.

For example, Listing 2.15 defines a simple filter that intercepts requests and
prints a report on the standard output (available with most servers when you run
them on your desktop during development) whenever the associated servlet or JSP
page is accessed.

Listing 2.15 ReportFilter.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Simple filter that prints a report on the standard output
 * whenever the associated servlet or JSP page is accessed.
 */

public class ReportFilter implements Filter {
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 System.out.println(req.getRemoteHost() +
 " tried to access " +
 req.getRequestURL() +
 " on " + new Date() + ".");
 chain.doFilter(request,response);
 }

 public void init(FilterConfig config)
 throws ServletException {
 }

 public void destroy() {}
}

Chapter 2 ■ Controlling Web Application Behavior with web.xml70

Once you have created a filter, you declare it in the web.xml file by using the
filter element along with the filter-name (arbitrary name), filter-class
(fully qualified class name), and, optionally, init-params subelements.

For instance, given the ReportFilter class just shown, you could make the fol-
lowing filter declaration in web.xml. It associates the name Reporter with the
actual class ReportFilter (which is in the coreservlets package).

<filter>
<filter-name>Reporter</filter-name>
<filter-class>coreservlets.ReportFilter</filter-class>

</filter>

Once you have named a filter, you associate it with one or more servlets or JSP
pages by means of the filter-mapping element. You have two choices in this
regard.

First, you can use filter-name and servlet-name subelements to associate
the filter with a specific servlet name (which must be declared with a servlet ele-
ment in the same web.xml file). For example, the following snippet instructs the sys-
tem to run the filter named Reporter whenever the servlet or JSP page named
SomeServletName is accessed by means of a custom URL.

<filter-mapping>
<filter-name>Reporter</filter-name>
<servlet-name>SomeServletName</servlet-name>

</filter-mapping>

Second, you can use the filter-name and url-pattern subelements to asso-
ciate the filter with groups of servlets, JSP pages, or static content. For example, the
following snippet instructs the system to run the filter named Reporter when any
URL in the Web application is accessed.

<filter-mapping>
<filter-name>Reporter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

For example, Listing 2.16 shows a portion of a web.xml file that associates the
ReportFilter filter with the servlet named PageName. The name PageName, in
turn, is associated with a JSP file named TestPage.jsp and URLs with the pattern
/UrlTest/*. The source code for TestPage.jsp and a discussion of the naming of
JSP pages were given earlier in Section 2.4 (Assigning Names and Custom URLs). In
fact, the servlet and servlet-name entries in Listing 2.16 are taken unchanged
from that section. Given these web.xml entries, you see debugging reports in the
standard output of the following sort (line breaks added for readability):

2.8 Specifying Welcome Pages 71

audit.irs.gov tried to access
http://mycompany.com/deployDemo/UrlTest7/business/tax-plan.html
on Tue Dec 25 13:12:29 EDT 2005.

2.8 Specifying Welcome Pages

Suppose a user supplies a URL like http://host/webAppPrefix/directoryName/ that
contains a directory name but no file name. What happens? Does the user get a
directory listing? An error? The contents of a standard file? If so, which one—
index.html, index.jsp, default.html, default.htm, or what?

The welcome-file-list element, along with its subsidiary welcome-file
element, resolves this ambiguity. For example, the following web.xml entry specifies
that if a URL gives a directory name but no file name, the server should try index.jsp

Listing 2.16 web.xml (Excerpt showing filter usage)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <servlet>
 <servlet-name>PageName</servlet-name>
 <jsp-file>/WEB-INF/jspPages/TestPage.jsp</jsp-file>
 </servlet>
 <servlet-mapping>
 <servlet-name>PageName</servlet-name>
 <url-pattern>/UrlTest7/*</url-pattern>
 </servlet-mapping>

<filter>
 <filter-name>Reporter</filter-name>
 <filter-class>coreservlets.ReportFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>Reporter</filter-name>
 <servlet-name>PageName</servlet-name>
 </filter-mapping>

<!-- ... -->
</web-app>

Chapter 2 ■ Controlling Web Application Behavior with web.xml72

first and index.html second. If neither is found, the result is server specific (e.g., a
directory listing).

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

Although many servers follow this behavior by default, they are not required to do
so. As a result, it is good practice to explicitly use welcome-file-list to ensure
portability.

Core Approach

Make welcome-file-list a standard entry in your web.xml files.

2.9 Designating Pages
to Handle Errors

Now, we realize that you never make any mistakes when developing servlets and JSP
pages and that all of your pages are so clear that no rational person could be confused
by them. Still, the world is full of irrational people, and users could supply illegal
parameters, use incorrect URLs, or fail to provide values for required form fields.
Besides, other developers might not be as careful as you are, and they should have
some tools to overcome their deficiencies.

The error-page element is used to handle problems. It has two possible subele-
ments: error-code and exception-type. The first of these, error-code, desig-
nates what URL to use when a designated Hypertext Transfer Protocol (HTTP) error
code occurs. (If you aren’t familiar with HTTP error codes, they are discussed in Chap-
ter 6 of Volume I of Core Servlets and JavaServer Pages.) The second of these subele-
ments, exception-type, designates what URL to use when a designated Java
exception is thrown but not caught. Both error-code and exception-type use
the location element to designate the URL. This URL must begin with /, mak-
ing it relative to the Web application root directory. The page at the place desig-
nated by location can access information about the error by looking up two
special-purpose attributes of the HttpServletRequest object: javax.serv-
let.error.status_code and javax.servlet.error.message.

2.9 Designating Pages to Handle Errors 73

The error-code Element
To better understand the value of the error-code element, consider what happens
at most sites when you type the file name incorrectly. You typically get a 404 error
message that tells you that the file can’t be found but provides little useful informa-
tion. On the other hand, try typing unknown file names at www.microsoft.com,
www.ibm.com, or www.bea.com. There, you get useful messages that provide alter-
native places to look for the page of interest. Providing such useful error pages is a
valuable addition to your Web application. In fact, http://www.plinko.net/404/ has
an entire site devoted to the topic of 404 error pages. This site includes examples of
the best, worst, and funniest 404 pages from around the world.

Listing 2.17 shows the web.xml file that designates Listing 2.18 as the page that
gets displayed when a 404 error code is returned. Listing 2.18 shows the JSP page
that could be returned to clients that provide unknown file names. Figure 2–19
shows a typical result. Note that the URL displayed in the browser remains the one
supplied by the client; the error page is a behind-the-scenes implementation tech-
nique; the system uses RequestDispatcher.forward to access it, not
response.sendRedirect. Also note the location of NotFound.jsp. Because it is
the server, not the client (e.g., browser), that resolves the path specified by the
location subelement, you are allowed to place NotFound.jsp inside of the WEB-INF

directory.

Listing 2.17 web.xml (Excerpt designating error pages for HTTP error codes)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<error-page>
 <error-code>404</error-code>
 <location>/WEB-INF/jspPages/NotFound.jsp</location>
 </error-page>

<!-- ... -->
</web-app>

www.microsoft.com
www.ibm.com
www.bea.com
http://www.plinko.net/404/

Chapter 2 ■ Controlling Web Application Behavior with web.xml74

Figure 2–19 Use of helpful 404 messages can enhance the usability of your site.

Listing 2.18 NotFound.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>404: Not Found</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Error!</H2>
I'm sorry, but I cannot find a page that matches
<%= request.getAttribute("javax.servlet.forward.request_uri") %>
on the system. Maybe you should try one of the following:

 Go to the server's home page.
 Search for relevant pages.

 <FORM ACTION="http://www.google.com/search">
 <CENTER>
 Keywords: <INPUT TYPE="TEXT" NAME="q">

 <INPUT TYPE="SUBMIT" VALUE="Search">
 </CENTER>
 </FORM>
 Admire a random multiple of 404:
 <%= 404*((int)(1000*Math.random())) %>.
 Try the amazing and amusing plinko.net
 404 archive.

</BODY></HTML>

2.9 Designating Pages to Handle Errors 75

The exception-type Element
The error-code element handles the case when a request results in a particular
HTTP status code. But what about the equally common case when the servlet or JSP
page returns 200 but generates a runtime exception? That’s the situation that can be
handled by the exception-type element. However, in real Web applications you
should rarely if ever rely on this mechanism to catch exceptions. All exceptions
should be caught explicitly in your code.

To use the web.xml way of catching exceptions, you only need to supply two
things: a fully qualified exception class and a location, as shown here.

<error-page>
<exception-type>package.ClassName</exception-type>
<location>/SomeURL</location>

</error-page>

Then, if any servlet or JSP page in the Web application generates an uncaught
exception of the specified type, the designated URL is used. The exception type can
be a standard one like javax.ServletException or java.lang.OutOf-
MemoryError, or it can be an exception specific to your application.

For instance, Listing 2.19 shows an exception class named DumbDeveloper-
Exception that might be used to flag particularly bad mistakes by clueless pro-
grammers (not that you have any of those types on your development team). The
class also contains a static method called dangerousComputation that sometimes
generates this type of exception. Listing 2.20 shows a JSP page that calls dangerous-
Computation on random integer values. When the exception is thrown, DDE.jsp
(Listing 2.21) is displayed to the client, as designated by the exception-type entry
shown in the web.xml version of Listing 2.22. Figures 2–20 and 2–21 show lucky and
unlucky results, respectively.

Listing 2.19 DumbDeveloperException.java

package coreservlets;

/** Exception used to flag particularly onerous
 programmer blunders. Used to illustrate the
 exception-type web.xml element.
*/

public class DumbDeveloperException extends Exception {
 public DumbDeveloperException() {
 super("Duh. What was I *thinking*?");
 }

Chapter 2 ■ Controlling Web Application Behavior with web.xml76

 public static int dangerousComputation(int n)
 throws DumbDeveloperException {
 if (n < 5) {
 return(n + 10);
 } else {
 throw(new DumbDeveloperException());
 }
 }
}

Listing 2.20 RiskyPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Risky JSP Page</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Risky Calculations</H2>
<%@ page import="coreservlets.*" %>
<% int n = ((int)(10 * Math.random())); %>

 n: <%= n %>
 dangerousComputation(n):
 <%= DumbDeveloperException.dangerousComputation(n) %>

</BODY></HTML>

Listing 2.21 DDE.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Dumb</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H2>Dumb Developer</H2>
We're brain dead. Consider using our competitors.
</BODY></HTML>

Listing 2.19 DumbDeveloperException.java (continued)

2.9 Designating Pages to Handle Errors 77

Figure 2–20 Fortuitous results of RiskyPage.jsp.

Figure 2–21 Unlucky results of RiskyPage.jsp.

Listing 2.22 web.xml (Excerpt designating error pages for exceptions)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<error-page>
 <exception-type>
 coreservlets.DumbDeveloperException
 </exception-type>
 <location>/WEB-INF/jspPages/DDE.jsp</location>
 </error-page>

<!-- ... -->
</web-app>

Chapter 2 ■ Controlling Web Application Behavior with web.xml78

2.10 Providing Security

Use of the server’s built-in capabilities to manage security is discussed in Chapter 3
(Declarative Security). This section summarizes the web.xml elements that relate to
this topic.

Designating the Authentication Method
You use the login-config element to specify how the server should authenticate
users who attempt to access protected pages. It contains three possible subelements:
auth-method, realm-name, and form-login-config.

auth-method
This subelement of login-config lists the specific authentication mecha-
nism that the server should use. Legal values are BASIC, DIGEST, FORM, and
CLIENT-CERT. Servers are only required to support BASIC and FORM.

BASIC specifies that standard HTTP authentication should be used, in
which the server checks for an Authorization header, returning a 401 status
code and a WWW-Authenticate header if the header is missing. This causes
the client to pop up a dialog box that is used to populate the Authorization
header. Details of this process are discussed in Section 3.3 (BASIC Authentica-
tion). Note that this mechanism provides little or no security against attackers
who are snooping on the Internet connection (e.g., by running a packet sniffer
on the client’s subnet) because the username and password are sent with the
easily reversible base64 encoding. All compliant servers are required to sup-
port BASIC authentication.

DIGEST indicates that the client should transmit the username and pass-
word using the encrypted Digest Authentication form. This provides more
security against network intercepts than does BASIC authentication, but the
encryption can be reversed more easily than the method used in Secure Sock-
ets Layer (SSL; HTTPS). The point is somewhat moot, however, since few
browsers currently support Digest Authentication, and consequently servlet
containers are not required to support it.

FORM specifies that the server should check for a reserved session cookie
and should redirect users who do not have it to a designated login page. That
page should contain a normal HTML form to gather the username and pass-
word. After logging in, users are tracked by means of the reserved session-level
cookie. Although in and of itself, FORM authentication is no more secure against
network snooping than is BASIC authentication, additional protection such as
SSL or network-level security (e.g., IPSec or VPN) can be layered on top if
necessary. All compliant servers are required to support FORM authentication.

2.10 Providing Security 79

CLIENT-CERT stipulates that the server must use HTTPS (HTTP over
SSL) and authenticate users by means of their public key certificate. This pro-
vides strong security against network intercept, but only fully J2EE-compliant
servers are required to support it.

realm-name
This element applies only when the auth-method is BASIC. It designates the
name of the security realm that is used by the browser in the title of the dialog
box and as part of the Authorization header.

form-login-config
This element applies only when the auth-method is FORM. It designates
two pages: the page that contains the HTML form that collects the username
and password (by means of the form-login-page subelement), and the
page that should be used to indicate failed authentication (by means of the
form-error-page subelement). As discussed in Chapter 3 (Declarative Secu-
rity), the HTML form given by the form-login-page must have an ACTION
attribute of j_security_check, a username text field named j_username,
and a password field named j_password.

For example, Listing 2.23 instructs the server to use form-based authenti-
cation. A page named login.jsp in the top-level directory of the Web app
should collect the username and password, and failed login attempts should be
reported by a page named login-error.jsp in the same directory.

Listing 2.23 web.xml (Excerpt showing login-config)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<security-constraint>...</security-constraint>
<login-config>

 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/login-error.jsp</form-error-page>
 </form-login-config>
 </login-config>

<!-- ... -->
</web-app>

Chapter 2 ■ Controlling Web Application Behavior with web.xml80

Restricting Access to Web Resources
So, you can tell the server which authentication method to use. “Big deal,” you say,
“that’s not much use unless I can designate the URLs that should be protected.”
Right. Designating these URLs and describing the protection they should have is the
purpose of the security-constraint element. This element contains four possi-
ble subelements : web-resource-collection , auth-constraint ,
user-data-constraint, and display-name. Each of these is described in the
following subsections.

web-resource-collection
This element identifies the resources that should be protected. All secu-
rity-constraint elements must contain at least one web-resource-
collection entry. This element consists of a web-resource-name
element that gives an arbitrary identifying name, a url-pattern element
that identifies the URLs that should be protected, an optional http-method
element that designates the HTTP commands to which the protection applies
(GET, POST, etc.; the default is all methods), and an optional description
element that provides documentation. For example, the following
web-resource-collection entry (within a security-constraint ele-
ment) designates that all documents in the proprietary directory of the Web
application should be protected.

<security-constraint>
<web-resource-collection>

<web-resource-name>Proprietary</web-resource-name>
<url-pattern>/proprietary/*</url-pattern>

</web-resource-collection>
<!-- ... -->

</security-constraint>

It is important to note that the url-pattern applies only to clients that
access the resources directly. In particular, it does not apply to pages that are
accessed through the MVC architecture with a RequestDispatcher or by
the similar means of jsp:forward. This asymmetry is good if used properly.
For example, with the MVC architecture a servlet looks up data, places it in
beans, and forwards the request to a JSP page that extracts the data from the
beans and displays it. You want to ensure that the JSP page is never accessed
directly but instead is accessed only through the servlet that sets up the beans
the page will use. The url-pattern and auth-constraint (see next sub-
section) elements can provide this guarantee by declaring that no user is per-
mitted direct access to the JSP page. However, this asymmetric behavior can
catch developers off guard and allow them to accidentally provide unrestricted
access to resources that should be protected.

2.10 Providing Security 81

Core Warning

These protections apply only to direct client access. The security model
does not apply to pages accessed by means of a RequestDispatcher
or jsp:forward.

auth-constraint
Whereas the web-resource-collection element designates which URLs
should be protected, the auth-constraint element designates which users
should have access to protected resources. It should contain one or more
role-name elements identifying the class of users that have access and,
optionally, a description element describing the role. All role names that
appear in web.xml specified with the role-name subelement of the
auth-constraint element must be globally declared under the secu-
rity-role element. The security-role element goes directly under the
web-app element. It contains one or more role-name subelements. For
instance, the following part of the security-constraint element in
web.xml states that only users who are designated as either Administrators or
Big Kahunas (or both) should have access to the designated resource.

<security-constraint>
<web-resource-collection>...</web-resource-collection>
<auth-constraint>

<role-name>administrator</role-name>
<role-name>kahuna</role-name>

</auth-constraint>
</security-constraint>
<security-role>

<role-name>administrator</role-name>
<role-name>kahuna</role-name>

</security-role>

It is important to realize that this is the point at which the portable portion of
the process ends. How a server determines which users are in which roles and
how it stores user passwords is completely system dependent. See Section 3.1
(Form-Based Authentication) for the details on the approach used by Tomcat.

For example, by default Tomcat uses install_dir/conf/tomcat-users.xml to
associate usernames with role names and passwords, as in the following exam-
ple that designates users joe (with password bigshot) and jane (with pass-
word enaj) as belonging to the administrator and/or kahuna roles.

<tomcat-users>
<user name="joe"

password="bigshot" roles="administrator,kahuna" />

Chapter 2 ■ Controlling Web Application Behavior with web.xml82

<user name="jane"
password="enaj" roles="kahuna" />

<!-- ... -->
</tomcat-users>

Core Warning

Container-managed security requires a significant server-specific
component. In particular, you must use nonportable methods to
associate passwords with usernames and to map usernames to role
names.

user-data-constraint
This optional element indicates which transport-level protections should
be used when the associated resource is accessed. It must contain a
transport-guarantee subelement (with legal values NONE, INTEGRAL,
or CONFIDENTIAL) and may optionally contain a description element. A
value of NONE (the default) for transport-guarantee puts no restrictions
on the communication protocol used. A value of INTEGRAL means that the
communication must be of a variety that prevents data from being changed in
transit without detection. A value of CONFIDENTIAL means that the data must
be transmitted in a way that prevents anyone who intercepts it from reading it.
Although in principle (and in future HTTP versions) there may be a distinction
between INTEGRAL and CONFIDENTIAL, in current practice they both simply
mandate the use of SSL. For example, the following instructs the server to only
permit HTTPS connections to the associated resource:

<security-constraint>
<!-- ... -->
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

display-name
This rarely used subelement of security-constraint gives a name to the
security constraint entry that might be used by a GUI tool.

2.11 Controlling Session Timeouts 83

Assigning Role Names
Up to this point, the discussion has focused on security that was completely managed
by the container (server). Servlets and JSP pages, however, can also manage their
own security. For details, see Chapter 4 (Programmatic Security).

For example, the container might let users from either the bigwig or
bigcheese role access a page showing executive perks, but permit only the bigwig
users to modify the page’s parameters. One common way to accomplish this more
fine-grained control is to call the isUserInRole("someRoleName") method of
HttpServletRequest and modify access accordingly (for an example, see Sec-
tion 4.1). The someRoleName role used in the isUserInRole method usually
refers to one of the role names declared inside the security-role element.
However, it can also refer to the value of the role-name subelement of the
security-role-ref element.

The security-role-ref is a subelement of servlet, which provides an alias
for a security role name that appears in the list of security role names under the
security-role element. For instance, suppose you acquired a precompiled
third-party servlet that was written to call request.isUserInRole("boss").
However, in your Web application you’ve declared and have been using "manager"
to refer to the same concept. The following would permit the third-party servlet to
use "boss" to refer to the "manager" role declared in your Web app.

<servlet>
<!-- ... -->
<security-role-ref>

<role-name>boss</role-name> <!-- New alias -->
<role-link>manager</role-link> <!-- Declared name -->

</security-role-ref>
</servlet>
<security-role>

<role-name>manager</role-name>
</security-role>

2.11 Controlling Session Timeouts

If a session has not been accessed for a certain period of time, the server can throw it
away to save memory. You can explicitly set the timeout for individual session objects
by using the setMaxInactiveInterval method of HttpSession. If you do not
use this method, the default timeout is server specific. However, the ses-
sion-config and session-timeout elements can be used to give an explicit
timeout that will apply on all servers. The units are minutes, so the following example
sets the default session timeout to three hours (180 minutes).

Chapter 2 ■ Controlling Web Application Behavior with web.xml84

<session-config>
<session-timeout>180</session-timeout>

</session-config>

There are two small inconsistencies between the session-config method of
setting the session timeout and using the setMaxInactiveInterval method of
HttpSession. First, the value of the session-timeout subelement is specified
in minutes, whereas the value of setMaxInactiveInterval is specified in sec-
onds. Second, if session-timeout is specified as either 0 or a negative number,
the session will never expire, but only the negative number passed to setMaxInac-
tiveInterval will accomplish the same result.

2.12 Documenting Web Applications

More and more development environments are starting to provide explicit support
for servlets and JSP. Examples include Borland JBuilder Enterprise Edition, Oracle
JDeveloper, Dreamweaver, MyEclipseIDE, NitroX, Sun Java Studio Creator,
WebLogic Workshop, and others.

A number of the web.xml elements are designed not for the server, but for the
visual development environment. These include icon, display-name, and
description.

icon
The icon element designates the location of either one or two image files that
the GUI tool can use to represent the Web application. A 16 × 16 GIF or JPEG
image can be specified with the small-icon element, and a 32 × 32 image
can be specified with large-icon. Here is an example:

<icon>
<small-icon>/WEB-INF/images/small-book.gif</small-icon>
<large-icon>/WEB-INF/images/tome.jpg</large-icon>

</icon>

Because these images are only used by the IDEs, they are never served to the
client (e.g., a browser), you are allowed to store them inside the protected
WEB-INF directory.

display-name
The display-name element provides a name that the GUI tools might use to
label this particular Web application. Here is an example:

<display-name>Rare Books</display-name>

2.13 Associating Files with MIME Types 85

description
The description element provides explanatory text, as shown here:

<description>
This Web application represents the store developed for
rare-books.com, an online bookstore specializing in rare
and limited-edition books.
</description>

2.13 Associating Files with
MIME Types

Servers typically have a way for Webmasters to associate file extensions with media
types. So, for example, a file named mom.jpg would automatically be given a MIME
type of image/jpeg. However, suppose that your Web application has unusual files
that you want to guarantee are assigned a certain MIME type when sent to clients.
The mime-mapping element, with extension and mime-type subelements, can
provide this guarantee. For example, the following code instructs the server to assign
a MIME type of application/x-fubar to all files that end in .foo.

<mime-mapping>
<extension>foo</extension>
<mime-type>application/x-fubar</mime-type>

</mime-mapping>

Or, perhaps your Web application wants to override standard mappings. For
instance, the following would tell the server to designate .ps files as plain text (text/
plain) rather than as PostScript (application/postscript) when sending
them to clients.

<mime-mapping>
<extension>ps</extension>
<mime-type>text/plain</mime-type>

</mime-mapping>

For more information on MIME types, see http://www.iana.org/assignments/

media-types/.

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Chapter 2 ■ Controlling Web Application Behavior with web.xml86

2.14 Configuring JSP Pages

The jsp-config element is used to provide configuration information for the
JSP pages in a Web appl icat ion. It has two subelements, taglib and
jsp-property-group. Both subelements can appear zero or more times under
the jsp-config element, but any of the taglib subelements must appear before
any of the jsp-property-group subelements. Each one is discussed in the fol-
lowing subsections.

Locating Tag Library Descriptors
The JSP taglib directive has a required uri attribute that gives the location of a
TLD file relative to the Web application root. The actual name of the TLD file might
change when a new version of the tag library is released, but you might want to avoid
changing all the existing JSP pages. Furthermore, you might want to use a short uri
to keep the taglib directives concise. That’s where the deployment descriptor’s
taglib element comes in. It contains two subelements: taglib-uri and
taglib-location. The taglib-uri element should exactly match whatever is
used for the uri attribute of the JSP taglib directive. The taglib-location
element gives the real location of the TLD file. For example, suppose that you place
the file chart-tags-1.3beta.tld in yourWebApp/WEB-INF/tlds. Now, suppose that
web.xml contains the following within the web-app element:

<jsp-config>
<taglib>

<taglib-uri>/charts</taglib-uri>
<taglib-location>

/WEB-INF/tlds/chart-tags-1.3beta.tld
</taglib-location>

</taglib>
</jsp-config>

Given this specification, JSP pages can now make use of the tag library by means
of the following simplified form:

<% taglib uri="/charts" prefix="somePrefix" %>

When the next version of the charts tag becomes available, you will only have to
update the taglib-location element. The taglib directive used in your JSP
pages can stay unchanged.

Also note that the taglib element appears inside the jsp-config element in
web.xml version 2.4, whereas version 2.3 of web.xml requires this element to be
directly under the web-app root element.

2.14 Configuring JSP Pages 87

Configuring JSP Page Properties
JSP page properties are configured using one or more jsp-property-group ele-
ments. The properties specified within each jsp-property-group apply only to
the URLs matched by the url-pattern subelement mapping. You can list more
than one url-pattern subelement, but all of them have to appear before any other
subelement of jsp-property-group. The rest of the jsp-property-group
subelements are optional. The following is a list of all jsp-property-group
subelements and their usages. These subelements have to appear (if at all) in the fol-
lowing order.

url-pattern
The url-pattern element contains the mapping used to match URLs to JSP
pages. All other configuration properties specified within jsp-property-
group apply only to the JSP pages matched by the url-pattern element.
Recall that there can be more than one url-pattern element specified as
long as all of them appear before any other jsp-property-group subele-
ments. Here, the url-pattern element works exactly the same way it works
when used as a subelement of the servlet-mapping element discussed in
Section 2.4 (Assigning Names and Custom URLs). Note that the URLs speci-
fied by this element are not resolved by the client, but the server. Thus, it’s per-
fectly legal to specify a URL containing the protected WEB-INF directory. For
example, the following web.xml snippet will apply configuration properties to
all JSP pages found inside the WEB-INF/myjsps folder.

<jsp-config>
<jsp-property-group>

<url-pattern>/WEB-INF/myjsps/*</url-pattern>
<!-- ... -->

</jsp-property-group>
</jsp-config>

el-ignored
The el-ignored element can be set to either true or false (e.g.,
<el-ignored>true</el-ignored>).When set to true, the affected pages
turn off JSP Expression Language (EL) processing and treat JSP EL as regular
text. This could be useful if some of the pages are inherited from a Web applica-
tion compliant with the servlet 2.3 or earlier specification. Such pages could have
unintentionally used ${ and \$ as regular text. If you wish to turn off JSP EL for
just a few pages, it might be more convenient to use the isELIgnored attribute
of the page directive as follows:

<%@ page isELIgnored="true" %>

Chapter 2 ■ Controlling Web Application Behavior with web.xml88

The page directive’s isELIgnored attribute value overrides the value speci-
fied in jsp-property-group. The default value for el-ignored is false.

page-encoding
The page-encoding element specifies the character encoding to be used by
the JSP pages in this property group (e.g., <page-encoding>ISO-8859-1
</page-encoding>).The valid values for this element are the same as the
values for the pageEncoding attribute of the page directive. It is a transla-
tion time error to specify a different encoding through the jsp-property-
group element than any other means. For example, if the character encoding
specified inside the jsp-property-group element is ISO-8859-1, but
inside the JSP page you specify UTF-8, the server will not be able to translate
this JSP page into Java code, reporting an error. If you need to specify
page encoding for just a few pages, it might be more convenient to use the
pageEncoding attribute as follows:

<%@ page pageEncoding="UTF-8" %>

The default encoding is ISO-8859-1.

scripting-invalid
The scripting-invalid element can be set to either true or false (e.g.,
<scripting-invalid>true</scripting-invalid>). When set to true,
the server will produce a translation time error if any JSP page in this property
group uses scripting declarations, scriptlets, or scripting expressions. Because
using MVC and the JSP 2.0 EL generally produces cleaner JSP page code than
does explicit JSP scripting, the scripting-invalid element can be used to
enforce this practice across the development team. The default value is false.

is-xml
The is-xml element can be set to either true or false (e.g., <is-xml>
true</is-xml>). If set to true, this tells the server that the group of
resources that match the URL pattern of this property group are to be treated
as JSP Documents. A JSP Document is a JSP page that contains only valid
XML code. If the server encounters a resource within this property group that
is not a JSP Document, it will not be able to parse it. A regular JSP page con-
tains JSP as well as HTML code. Even if your HTML code is not correct (e.g.,
some end tag is missing), the server will still successfully parse it and produce
the Java code to output the erroneous HTML code to the client. You will not
be able to detect your error until the page displays in a browser and you notice
that something is visually wrong. On the other hand, enforcing a set of JSP
pages to contain valid XML avoids this problem. If false, the resources are

2.14 Configuring JSP Pages 89

assumed to not be JSP documents, unless there is another property group that
indicates otherwise. The default is false.

include-prelude
The include-prelude element contains a context-relative path that must
correspond to a resource in the Web application. When the resource is present,
the given path will be automatically included, using the static include direc-
tive, at the beginning of each JSP page in the jsp-property-group. This
capability can be useful if you want to provide a standard header in multiple
pages of your application. Rather than having to specify <%@ include
file="header.jsp" %> for each page, you can use the include-prelude
element to specify this header for the entire group of JSP pages. For an exam-
ple of this, please see Listings 2.24 through 2.28 and Figure 2–22.

include-coda
The include-coda element contains a context-relative path that must corre-
spond to a resource in the Web application. When the resource is present, the
given path will be automatically included, using the static include directive,
at the end of each JSP page in this jsp-property-group. Similar to the
include-prelude element, this can be useful if you want to provide a stan-
dard footer across multiple pages in your application. Rather than having to
specify <%@ include file="footer.jsp" %> for each page, you can use
the include-coda element to specify this footer for the entire group of
JSP pages. For an example of this, please see Listings 2.24 through 2.28 and
Figure 2–22.

Here is an example of a typical configuration. Listing 2.24 shows an excerpt from
the web.xml file. The excerpt indicates that the configurations will apply to all files
located in the /WEB-INF/jspPages/ustm directory. In this configuration we are
instructing the server to include a header and a footer with every resource served
from that directory. Listings 2.25 and 2.26 show the complete code for USTM-

Header.jsp and USTMFooter.jsp, respectively. Listing 2.27 shows the complete code
for the target of our configuration, USTMBody.jsp, which is located in the /WEB-INF/

jspPages/ustm directory. Note that USTMHeader.jsp, USTMBody.jsp, and USTM-

Footer.jsp do not produce valid HTML code by themselves. Each one is a snippet of
code that only makes sense in the context of all three, and only in the proper order—
USTMHeader.jsp, USTMBody.jsp, and then USTMFooter.jsp. Figure 2–22 shows the
result of the custom mapped URL invoking the USTMBody.jsp page. Also note that
because we configured JSP EL to be ignored, ${money} is interpreted as regular
text. Finally, Listing 2.28 shows the generated HTML code as the result of our
invocation.

Chapter 2 ■ Controlling Web Application Behavior with web.xml90

Listing 2.24 web.xml (Excerpt showing jsp-property-group)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<servlet>
 <servlet-name>USTMHomePage</servlet-name>
 <jsp-file>
 /WEB-INF/jspPages/ustm/USTMBody.jsp
 </jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>USTMHomePage</servlet-name>
<url-pattern>/ustm</url-pattern>

</servlet-mapping>

 <!-- Every page inside WEB-INF/jspPages/ustm should
 include USTMHeader.jsp at the top and
 USTMFooter.jsp at the bottom -->

<jsp-config>
 <jsp-property-group>

<url-pattern>/WEB-INF/jspPages/ustm/*</url-pattern>
 <el-ignored>true</el-ignored>
 <include-prelude>
 /WEB-INF/jspPages/USTMHeader.jsp
 </include-prelude>
 <include-coda>

/WEB-INF/jspPages/USTMFooter.jsp
 </include-coda>
 </jsp-property-group>
 </jsp-config>

<!-- ... -->
</web-app>

2.14 Configuring JSP Pages 91

Listing 2.25 USTMHeader.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD><TITLE>USTM Commission Home Page</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">
<CENTER><H2 style="display:inline;">
Welcome to the USTM Commission Home Page!</H2>

No tax dollars will be spared to save your hard-earned money!
™</CENTER><P />

Listing 2.26 USTMFooter.jsp

<HR />
<CENTER><H4 style="display: inline;">© 2005 USTM Commission
(United States Tax Misuse Commission)</H4></CENTER>
</BODY>
</HTML>

Listing 2.27 USTMBody.jsp

This year's agenda:

Finish hearing countless expert testimonies on the concept of
"The more of your ${money} we spend, the less you have.
Why?"
Schedule hearings on the topic of "No matter what we do it's
bad for the economy."
Why it's crucial that we double the budget of this
commission to prolong hearings on these topics, which are
extremely important to every American.
<P />

Chapter 2 ■ Controlling Web Application Behavior with web.xml92

Figure 2–22 Result of invoking /WEB-INF/jspPages/ustm/USTMBody.jsp through a custom
URL. USTMHeader.jsp is prepended and USTMFooter.jsp is appended per our web.xml

configuration. The string ${money} shows up as text because we disabled EL processing.

Listing 2.28 Generated HTML from invoking /ustm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD><TITLE>USTM Commission Home Page</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">
<CENTER><H2 style="display:inline;">
Welcome to the USTM Commission Home Page!</H2>

No tax dollars will be spared to save your hard-earned money!
™</CENTER><P />
This year's agenda:

Finish hearing countless expert testimonies on the concept of
"The more of your ${money} we spend, the less you have.
Why?"
Schedule hearings on the topic of "No matter what we do it's
bad for the economy."
Why it's crucial that we double the budget of this
commission to prolong hearings on these topics, which are
extremely important to every American.
<P /><HR />
<CENTER><H4 style="display: inline;">© 2005 USTM Commission
(United States Tax Misuse Commission)</H4></CENTER>
</BODY>
</HTML>

2.15 Configuring Character Encoding 93

2.15 Configuring Character Encoding

The locale and character encoding of the servlet response can be set explicitly by call-
ing setLocale in combination with the setContentType and setCharacter-
Encoding methods of the HttpServletResponse object. If only the setLocale
method is called, the character encoding used for the explicitly set locale is server depen-
dent. For portability and convenience, the character encoding to be used for the particu-
lar locale can be specified in web.xml with the use of locale-encoding-mapping-
list. The locale-encoding-mapping-list element is a subelement of the
root web-app element, and contains one or more locale-encoding-mapping
elements. The locale-encoding-mapping element contains the locale and
encoding elements as follows:

<locale-encoding-mapping-list>
<locale-encoding-mapping>

<locale>ja</locale>
<encoding>Shift_JIS</encoding>

</locale-encoding-mapping>
<locale-encoding-mapping>

<locale>he</locale>
<encoding>windows-1255</encoding>

</locale-encoding-mapping>
</locale-encoding-mapping-list>

2.16 Designating Application
Event Listeners

Application event listeners are classes that are notified when some event in the Web
application life cycle occurs. Examples of life-cycle events would include a notifica-
tion when the servlet context or a session object is created or modified. There are
other life-cycle events that have listener classes associated with them. They are dis-
cussed in detail in Chapter 6 (The Application Events Framework). Here, though,
we just want to briefly illustrate the use of the web.xml elements that are used to reg-
ister a listener with the Web application.

Registering a listener involves simply placing a listener element inside the
web-app element of web.xml. Inside the listener element, a listener-class
element lists the fully qualified class name of the listener, as follows:

<listener>
<listener-class>package.ListenerClass</listener-class>

</listener>

Chapter 2 ■ Controlling Web Application Behavior with web.xml94

For example, Listing 2.29 shows a simple listener called ContextReporter that
prints a message on the standard output whenever the Web application’s Servlet-
Context is created (e.g., the Web application is loaded) or destroyed (e.g., the
server is shut down). Listing 2.30 shows the portion of the web.xml file that is
required for registration of the listener.

Listing 2.29 ContextReporter.java

package coreservlets;

import javax.servlet.*;
import java.util.*;

/** Simple listener that prints a report on the standard output
 * when the ServletContext is created or destroyed.
 */

public class ContextReporter implements ServletContextListener {
 public void contextInitialized(ServletContextEvent event) {
 System.out.println("Context created on " +
 new Date() + ".");
 }

 public void contextDestroyed(ServletContextEvent event) {
 System.out.println("Context destroyed on " +
 new Date() + ".");
 }
}

Listing 2.30 web.xml (Excerpt declaring a listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Turn on the ContextReporter. -->
<listener>

<listener-class>coreservlets.ContextReporter</listener-class>
 </listener>

<!-- ... -->
</web-app>

2.17 Developing for the Clustered Environment 95

2.17 Developing for the Clustered
Environment

Enterprise-level Web applications are required to handle tens of thousands of con-
current user activities. It would be close to impossible to have a machine powerful
enough to process that many requests by itself. It would certainly be extremely
expensive to purchase such a machine. In addition, if that enormously powerful
machine broke, it would mean downtime for the Web site hosted on that machine.
For high-traffic Web sites like Amazon or eBay, this downtime would amount to mil-
lions of dollars of lost revenue an hour.

To address this problem, enterprise-level applications are deployed in a clustered
environment. A clustered environment usually consists of many machines connected
through the local area network (LAN) and sometimes even through the wide area
network (WAN). Usually, a hardware load balancer is placed in front of all of these
machines. The load balancer receives a request from the client and decides which
machine in the cluster to forward this request to based on a preconfigured set of
algorithms. In general, this keeps each machine in the cluster equally loaded, so no
single machine’s resources are exhausted. Software-based load balancers exist as well.
For example, Tomcat comes bundled with a software-based load balancer, which
resides as a Web application in tomcat_dir/webapps/balancer.

In this environment, it is quite possible for a client to be served by different
machines from one request to another. Yet, to the client, it all looks like a single Web
application. For example, you can be served by machine A to display a list of items in
your online shopping cart. When you click the Complete Purchase button, it might
be machine B that sends the Payment Options screen to your browser. The informa-
tion about who you are as a user as well as your session data is shared between
machine A and machine B.

This behavior is achieved by sharing the HttpSession among the machines in
the cluster. Even though each machine in the cluster has its own Java Virtual
Machine (JVM), the HttpSession object gets copied and shared among the cluster.

Because clustered Web applications run in multiple JVMs, you may not rely on
the usual mechanisms of sharing data used in regular Web applications. The follow-
ing is a list of the things you should remember when developing a Web application
that might be deployed in a clustered environment.

1. Avoid instance variables and static data (such as singletons) for
shared data. Each JVM in a cluster will have its own copy of the
instance variables and static data. Changes to this data in one JVM will
leave all other JVMs unaffected. However, if you are certain that the
static data never changes throughout the execution of your Web app,
it’s perfectly fine to use static data (and singletons) to share data

Chapter 2 ■ Controlling Web Application Behavior with web.xml96

among the resources in your Web application (not different deploy-
ments on different machines in the cluster). In this case, it doesn’t
matter that each JVM has its own copy of this data because it would be
the same on all machines in the cluster.

2. Don't store data in the ServletContext. Each JVM in a cluster
has its own copy of the ServletContext. Therefore, if you store an
attribute in the ServletContext, the ServletContext object of
other servers (JVMs) will not contain this attribute. However, you can
use the ServletContext to share data that is guaranteed to stay
unchanged among the resources in your Web application (not differ-
ent deployments on different machines in the cluster). This data
would have to be placed into the ServletContext immediately at
startup of the Web application. This initialization can be accomplished
with a servlet that is guaranteed to be loaded at server startup by the
load-on-startup element of web.xml (see Section 2.6). The ini-
tialization can also be accomplished with the ServletContextLis-
tener’s contextInitialized method. For example, if several
pages in your application need a drop-down box with a prefilled list of
countries that are stored in a database, you can initialize and store this
list in the ServletContext inside the contextInitialized
method of the ServletContextListener. For a detailed discus-
sion of listeners, please see Chapter 6 (The Application Events
Framework).

3. Objects stored in HttpSession must implement Serializable.
The servlet specification requires compliant Web containers to support
migration of objects stored in the HttpSession that implement the
Serializable interface. If the objects stored in the HttpSession do
not implement the Serializable interface, the container may fail
to migrate the session. If this failure happens, the container will throw
an IllegalArgumentException. Also note that the class imple-
menting the Serializable interface has to follow regular serialization
guidelines. For more information, please go to http://java.sun.com/

j2se/1.5.0/docs/guide/serialization/.
4. Only minimal information should be stored in HttpSession.

For a clustered environment to function as a single Web application,
the data stored in the HttpSession must be kept in sync with the
other servers in the cluster. This is achieved by sending the data back
and forth between the servers. Naturally, this consumes a lot of
resources. Therefore, storing a lot of data in the HttpSession could
considerably degrade the performance of your Web application even
when the request load is not very high.

http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/

2.18 J2EE Elements 97

In the deployment descriptor, web.xml, the distributable element indicates
that the Web application is programmed in such a way that servers that support clus-
tering can safely distribute the Web application across multiple servers. The dis-
tributable element contains no subelements or data—it is simply a flag (as
follows):

<distributable />

One of the prime features of a J2EE application is its scalability. The idea of scal-
ability is that the same code written to serve 100 users per day can serve tens of thou-
sands of users per second. Think of a music CD. The same music CD that you use in
your portable CD player with headphones can be inserted into a huge amplifying sys-
tem with many speakers and played for an entire stadium containing thousands of
people. All that’s changed is the hardware you plugged the CD into. If there is a pos-
sibility that your Web application will need to handle many more users in the future,
and you don’t take the previously mentioned guidelines into account, the result
might be an expensive rewrite of your application.

2.18 J2EE Elements

This section describes the web.xml elements that are used for Web applications
that are part of a full J2EE environment. We provide a brief summary here; for
details, see Chapter 5 of the Java 2 Platform Enterprise Edition version 1.4 specifi-
cation at http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

resource-env-ref
The resource-env-ref element declares an administered object associ-
ated with a resource. It consists of an optional description element, a
resource-env-ref-name element (a Java Naming and Directory
Interface [JNDI] name relative to the java:comp/env context), and a
resource-env-type element (the fully qualified class designating the type
of the resource), as follows:

<resource-env-ref>
<resource-env-ref-name>

jms/StockQueue
</resource-env-ref-name>
<resource-env-ref-type>

javax.jms.Queue
</resource-env-ref-type>

</resource-env-ref>

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

Chapter 2 ■ Controlling Web Application Behavior with web.xml98

resource-ref
The resource-ref element declares an external resource used with a
resource factory. It consists of an optional description element, a
res-ref-name element (the resource manager connection-factory reference
name), a res-type element (the fully qualified class name of the factory
type), a res-auth element (the type of authentication used—Application
or Container), and an optional res-sharing-scope element (a specifica-
tion of the shareability of connections obtained from the resource—Share-
able or Unshareable.) Here is an example:

<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

env-entry
The env-entry element declares the Web application’s environment entry.
It consists of an optional description element, an env-entry-name
element (a JNDI name relative to the java:comp/env context), an
env-entry-value element (the entry value), and an env-entry-type
element (the fully qualified class name of a type). Valid values for
env-entry-type are java.lang.Boolean, java.lang.Byte,
java.lang.Character, java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long, java.lang.Float, and
java.lang.Double. Here is an example:

<env-entry>
<env-entry-name>minAmount</env-entry-name>
<env-entry-value>100.00</env-entry-value>
<env-entry-type>java.lang.Double</env-entry-type>

</env-entry>

ejb-ref
The ejb-ref element declares a reference to the home interface of an
enterprise bean. It consists of an optional description element, an
ejb-ref-name element (the name of the EJB reference relative to
java:comp/env), an ejb-ref-type element (the type of the bean—
Entity or Session), a home element (the fully qualified name of the bean’s
home interface), a remote element (the fully qualified name of the bean’s
remote interface), and an optional ejb-link element (the name of another
bean, from a different jar file, to which the current bean is linked). The path
name specified by the ejb-link element has to be relative to the location of

2.18 J2EE Elements 99

the WAR file of your Web application followed by “#” and the registered name
of the bean. Here is an example:

<ejb-ref>
 <ejb-ref-name>ejb/FireEveryoneRemoteHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>humanresources.FireEveryoneRemoteHome</home>
 <remote>humanresources.FireEveryoneRemote</remote>
 <ejb-link>cheating.jar#SellCEOStockEJB</ejb-link>
</ejb-ref>

ejb-local-ref
The ejb-local-ref element declares a reference to the local home inter-
face of an enterprise bean. It has the same attributes and is used in the same
way as the ejb-ref element, with the exception that local-home is used in
place of home as follows:

<ejb-local-ref>
 <ejb-ref-name>ejb/CutSalaryLocal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>humanresources.CutSalaryLocalHome</local-home>
 <local>humanresources.CutSalaryLocal</local>
 <ejb-link>uppermanagement.jar#BeanCounterLocal</ejb-link>
</ejb-local-ref>

service-ref
The service-ref element declares a reference to a Web Service as follows:

<service-ref>
 <description>Weather Forecast Service Client</description>
 <display-name>Weather Service Client</display-name>
 <icon>

<small-icon>weather16x16.gif</small-icon>
<large-icon>weather32x32.gif</large-icon>

</icon>
 <service-ref-name>services/myWeather</service-ref-name>
 <service-interface>

javax.xml.rpc.Service
</service-interface>

 <wsdl-file>WEB-INF/wsdl/weatherForecast.wsdl</wsdl-file>
 <jaxrpc-mapping-file>

WEB-INF/weatherServiceMapping.xml
</jaxrpc-mapping-file>

 <service-qname>
 <namespaceURI>

http://ws.myweatherservice.com

Chapter 2 ■ Controlling Web Application Behavior with web.xml100

</namespaceURI>
 <localpart>MyWeatherService</localpart>
 </service-qname>

 <port-component-ref>
 <service-endpoint-interface>
 com.myweatherservice.ws.beans.endpoint.MyWeather
 </service-endpoint-interface>
 <port-component-link>
 nationalWeather.jar#LocalizedWeather
 </port-component-link>
 </port-component-ref>

 <handler>
 <handler-name>MyWeatherHandler</handler-name>
 <handler-class>

com.mycentralportal.handlers.MyWeatherHandler
 </handler-class>

 <init-param>
 <param-name>localState</param-name>
 <param-value>OH</param-value>
 </init-param>
 <soap-header>
 <namespaceURI>

http://ws.myweatherservice.com
</namespaceURI>

 <localpart>MyWeatherHeader</localpart>
 </soap-header>
 <soap-role>

http://actor.soap.myweatherservice.com
</soap-role>

 <port-name>myWeatherPort</port-name>
 </handler>
</service-ref>

The optional description, display-name, and icon elements are there
for IDEs and documentation. The JNDI name that will be used in your code to
look up the Web Service is specified by the service-ref-name element
(relative to the java:comp/env context). The service-interface ele-
ment specifies the fully qualified JAX-RPC interface name that your Web
application depends on. Usually, this will be javax.xml.rpc.Service. The
optional wsdl-file element contains the location (relative to the root direc-
tory of the Web app) of the Web Services Description Language (WSDL) file.
This file has to be placed inside of the WEB-INF/wsdl directory.

The optional jaxrpc-mapping-file element contains the location of
the file that maps the WSDL definition to the Service Endpoint Interface and
Service Interface.

2.18 J2EE Elements 101

The optional service-qname element and its two subelements
(namespaceURI and localpart) declare the specific WSDL Service ele-
ment that is being referred to. It is omitted if the wsdl-file element is not
specified or if the WSDL file contains only one service.

The port-component-ref element declares a client dependency on the
container for resolving a Service Endpoint Interface to a WSDL port. It option-
ally associates the Service Endpoint Interface with a particular port-component.
It contains the service-endpoint-interface element and the optional
port-component-link element. The service-endpoint-interface
element defines a fully qualified name of the class that represents the Service
Endpoint Interface of a WSDL port. The port-component-link element
links a port-component-ref to a specific port component required to be
made available by the service reference.

The optional handler element declares the handler for the port compo-
nent. It contains the required elements handler-name and handler-
class, and the optional elements init-param, soap-header, soap-role,
and port-name. The handler-name element defines the name of the han-
dler (unique within web.xml). The handler-class element defines the fully
qualified class name of the handler implementation. The init-param ele-
ment contains param-name and param-value elements that define parame-
ters that the handler can retrieve and use during its initialization process. The
soap-header element defines the QName of the Simple Object Access Pro-
tocol (SOAP) header that will be processed by the handler. The soap-role
element contains the SOAP actor definition that the handler will play as a role.
The port-name element defines the WSDL port name with which the han-
dler should be associated.

message-destination-ref
The message-destination-ref element contains a declaration of a refer-
ence to a message destination associated with a resource declared in web.xml.
It consists of optional description and required message-destination-
ref-name, message-destination-type, and message-destination-
usage, and optional message-destination-link elements. The message-
destination-ref-name element specifies the JNDI name (relative to the
java:comp/env context) of a message destination reference. This name must
be unique within web.xml. The message-destination-type element
specifies the type of the destination, which can be either javax.jms.Queue
or javax.jms.Topic. The message-destination-usage specifies the
use of the message destination indicated by the reference. Its value indicates
whether messages are consumed from the message destination, produced
for the destination, or both (valid values are Consumes, Produces, or
ConsumesProduces). The message-destination-link is used to link
a message destination reference to a message destination. Its value must be

Chapter 2 ■ Controlling Web Application Behavior with web.xml102

declared by the message-destination-name element of the message-
destination element in the same web.xml file or in another deployment
descriptor in the same J2EE application unit. Here is an example:

<message-destination-ref>
 <message-destination-ref-name>
 jms/StockQueue
 </message-destination-ref-name>
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Consumes
 </message-destination-usage>
 <message-destination-link>
 CorporateStocks
 </message-destination-link>
</message-destination-ref>

message-destination
The message-destination specifies a logical message destination that is
mapped to a physical destination in the server-specific deployment descriptor.
It contains three optional elements (description, display-name, and
icon) and one required element—message-destination-name. The
message-destination-name element specifies a unique (within web.xml)
name for a message destination. There should be a message-destination
declared for every destination used in this web.xml file. Here is an example:

<message-destination>
 <message-destination-name>

CorporateStocks
</message-destination-name>

</message-destination>

This page intentionally left blank

DECLARATIVE
SECURITY

Topics in This Chapter

• Understanding the major aspects of Web application
security

• Authenticating users with HTML forms

• Using BASIC HTTP authentication

• Defining passwords in Tomcat

• Designating protected resources with the
security-constraint element

• Using login-config to specify the authentication
method

• Mandating the use of SSL

• Configuring Tomcat to use SSL

• Talking to Web servers interactively

• Creating your own Certificate Authority

• Signing a server certificate

105

ChapterChapter 3

There are two major aspects to securing Web applications:

1. Preventing unauthorized users from accessing sensitive data.
This process involves access restriction (identifying which resources
need protection and who should have access to them) and authentica-
tion (identifying users to determine if they are one of the authorized
ones). Simple authentication involves the user entering a username
and password in an HTML form or a dialog box; stronger authentica-
tion involves the use of X.509 certificates sent by the client to the
server. The first aspect of Web security applies to virtually all secure
applications. Even intranets at locations with physical access controls
usually require some sort of user authentication.

2. Preventing attackers from stealing network data while it is in
transit. This process involves the use of Secure Sockets Layer (SSL)
to encrypt the traffic between the browser and the server. This capa-
bility is generally reserved for particularly sensitive applications or for
particularly sensitive pages within a larger application. After all, unless
the attackers are on your local subnet, it is exceedingly difficult for
them to gain access to your network traffic.

These two security aspects are mostly independent. The approaches to access
restriction are the same regardless of whether or not you use SSL. With the excep-
tion of client certificates (which apply only to SSL), the approaches to authentication
are also identical whether or not you use SSL.

Chapter 3 ■ Declarative Security106

Within the Web application framework, there are two general approaches to this
type of security:

1. Declarative security. With declarative security, the topic of this
chapter, none of the individual servlets or JSP pages need any
security-aware code. Instead, both of the major security aspects are
handled by the server.

To prevent unauthorized access, you use the Web application
deployment descriptor (web.xml) to declare that certain URLs need
protection, and which categories of users should have access to them.
You also designate the authentication method that the server should
use to identify users. At request time, the server automatically
prompts users for usernames and passwords when they try to access
restricted resources, automatically checks the results against a pre-
defined set of usernames and passwords, and automatically keeps
track of which users have previously been authenticated. This process
is completely transparent to the servlets and JSP pages.

To safeguard network data, you use the deployment descriptor to
stipulate that certain URLs should only be accessible with SSL. If
users try to use a regular HTTP connection to access one of these
URLs, the server automatically redirects them to the HTTPS (SSL)
equivalent.

2. Programmatic security. With programmatic security, the topic of
the next chapter, protected servlets and JSP pages at least partially
manage their own security.

To prevent unauthorized access, each servlet or JSP page must
either authenticate the user or verify that the user has been authenti-
cated previously.

To safeguard network data, each servlet or JSP page has to check
the network protocol used to access it. If users try to use a regular
HTTP connection to access one of these URLs, the servlet or JSP
page must manually redirect them to the HTTPS (SSL) equivalent.

3.1 Form-Based Authentication

The most common type of declarative security uses regular HTML forms. The devel-
oper uses the deployment descriptor to identify the protected resources and to desig-
nate a page that has a form to collect usernames and passwords. A user who attempts
to access protected resources is redirected to the page containing the form. When
the form is submitted, the server checks the username and password against a list of

3.1 Form-Based Authentication 107

usernames, passwords, and roles (categories of users). If the login is successful and
the user belongs to a role that is permitted access to the page, the user is sent to the
page originally requested. If the login is unsuccessful, the user is sent to a designated
error page. Behind the scenes, the system uses some variation of session tracking to
remember which users have already been validated.

The whole process is automatic: redirection to the login page, checking of user-
names and passwords, redirection back to the original resource, and tracking of
already authenticated users are all performed by the container (server) in a manner
that is completely transparent to the individual resources. However, there is one
major caveat: The servlet specification explicitly says that form-based authentication
is not guaranteed to work when the server is set to perform session tracking based on
URL rewriting instead of cookies (the default session-tracking mechanism).

Core Warning

Depending on your server, form-based authentication might fail when
you use URL rewriting as the basis of session tracking.

This type of access restriction and authentication is completely independent of
the protection of the network traffic. You can stipulate that SSL be used for all, some,
or none of your application, but doing so does not change the way you restrict access
or authenticate users, nor does the use of SSL require your individual servlets or JSP
pages to participate in the security process; redirection to the URL that uses SSL and
encryption/decryption of the network traffic are all performed by the server in a
manner that is transparent to the servlets and JSP pages.

Eight basic steps are required to set up your system to use this type of form-based
security. We summarize the steps here, then give details on each step in the following
subsections. All the steps except for the first are standardized and portable across all
servers that support version 2.2 or later of the servlet API. Section 3.2 (Example:
Form-Based Authentication) illustrates the concepts with a small application.

1. Set up usernames, passwords, and roles. In this step, you desig-
nate a list of users and associate each with a password and one or more
abstract roles (e.g., normal user or administrator). This is a completely
server-specific process. In general, you’ll have to read your server’s
documentation, but we summarize the process for Tomcat.

2. Tell the server that you are using form-based authentication.
Designate the locations of the login and login-failure page.
This process uses the web.xml login-config element with an
auth-method subelement of FORM and a form-login-config
subelement that gives the locations of the two pages.

Chapter 3 ■ Declarative Security108

3. Create a login page. This page must have a form with an ACTION of
j_security_check, a METHOD of POST, a text field named
j_username, and a password field named j_password.

4. Create a page to report failed login attempts. This page can
simply say something like “username and password not found” and
perhaps give a link back to the login page.

5. Specify which URLs should be password protected. For this
step, you use the security-constraint element of web.xml.
This element, in turn, uses web-resource-collection and
auth-constraint subelements. The first of these (web-resource-
collection) designates the URL patterns to which access should be
restricted, and the second (auth-constraint) specifies the abstract
roles that should have access to the resources at the given URLs.

6. List all possible abstract roles (types of users) that will be
grated access to any resource. Each abstract role is declared using
the security-role element. The security-role element con-
tains the required role-name element, which contains the name of
the abstract role.

7. Specify which URLs should be available only with SSL. If your
server supports SSL, you can stipulate that certain resources are avail-
able only through encrypted HTTPS (SSL) connections. You use the
user-data-constraint subelement of security-constraint
for this purpose.

8. Turn off the invoker servlet. Security settings are based on URLs, so
you protect servlets by listing their URLs within the web-resource-
collection element. The servlet URLs, in turn, are normally defined
with the url-pattern element of servlet-mapping. However,
many servers also have a default servlet URL of the form http://host/
webAppPrefix/servlet/ServletName. If you have this capability enabled,
there are now two URLs that can invoke each servlet: the URL regis-
tered in servlet-mapping and the default (invoker servlet) URL.
Remembering to protect both addresses is too hard. Instead, disable
the invoker servlet, either globally for your server, or by mapping the
/servlet/* pattern within your Web application.

Details follow.

Setting Up Usernames, Passwords, and Roles
When a user attempts to access a protected resource in an application that is using
form-based authentication, the system automatically sends the user to an HTML
form to ask for a username and password, verifies that the password matches the
user, determines what abstract roles (regular user, administrator, executive, etc.) that

3.1 Form-Based Authentication 109

user belongs to, and sees whether any of those roles has permission to access the
resource. If so, the server redirects the user to the originally requested page. If not,
the server redirects the user to an error page.

The good news regarding this process is that the server (container) does a lot of
the work for you. The bad news is that the task of associating users with passwords
and logical roles is server specific. So, although you would not have to change the
web.xml file or any of the actual servlet and JSP code to move a secure Web applica-
tion from system to system, you would still have to make custom changes on each sys-
tem to set up the users and passwords.

In general, you will have to read your server’s documentation to determine how to
assign passwords and role membership to users. However, we summarize the process
for Tomcat.

Setting Passwords with Tomcat
Tomcat permits advanced developers to configure custom username and password man-
agement schemes (e.g., accessing a database, looking in the UNIX /etc/passwd file,
checking the Windows User Account settings, or making a Kerberos call). For details,
see http://jakarta.apache.org/tomcat/tomcat-5.5-doc/realm-howto.html. However,
this configuration is a lot of work, so Tomcat also provides a default mechanism for
use in testing. With this mechanism, Tomcat stores usernames, passwords, and roles
in tomcat_dir/conf/tomcat-users.xml. This file should contain an XML header fol-
lowed by a tomcat-users element containing any number of role and user ele-
ments. Each role element should have a rolename attribute. Each user element
should have three attributes: username, password (the plain text password), and
roles (a comma-separated list of logical role names). Listing 3.1 presents a simple
example that defines four users (valjean, bishop, javert, thenardier), each
of whom belongs to two logical roles.

Note that the default Tomcat strategy of storing unencrypted passwords is a poor
one for real deployed applications. First, an intruder who gains access to the server’s
file system can obtain all the passwords. Second, even system administrators who are
authorized to access server resources should not be able to obtain users’ passwords.
In fact, because many users reuse passwords on multiple systems, passwords should
never be stored in clear text. Instead, they should be encrypted with an algorithm
that cannot easily be reversed. Then, when a user supplies a password, it is encrypted
and the encrypted version is compared with the stored encrypted password. Never-
theless, the default Tomcat approach makes it easy to set up and test secure Web
applications. Just keep in mind that for real applications you’ll want to replace the
simple file-based password scheme with something more robust (e.g., a database or a
system call to Kerberos or the Windows User Account system).

http://jakarta.apache.org/tomcat/tomcat-5.5-doc/realm-howto.html

Chapter 3 ■ Declarative Security110

Telling the Server You Are Using Form-Based
Authentication; Designating Locations of Login
and Login-Failure Pages

You use the login-config element in the deployment descriptor (web.xml) to
control the authentication method. Recall from Chapter 1 (Using and Deploying
Web Applications) that this file goes in the WEB-INF directory of your Web applica-
tion. Although a few servers support nonstandard web.xml files (e.g., Tomcat has one
in tomcat_dir/conf that provides defaults for multiple Web applications), those files
are entirely server specific. We are addressing only the standard version that goes in
the Web application’s WEB-INF directory.

To use form-based authentication, supply a value of FORM for the auth-method
subelement and use the form-login-config subelement to give the locations of
the login (form-login-page) and login-failure (form-error-page) pages. In
the next sections we explain exactly what these two files should contain. For now,
however, note that nothing mandates that they use dynamic content. Thus, these
pages can consist of either JSP or ordinary HTML.

For example, Listing 3.2 shows part of a web.xml file that stipulates that the
container use form-based authentication. Unauthenticated users who attempt to
access protected resources will be redirected to http://host/webAppPrefix/

login.jsp. If they log in successfully, they will be returned to whatever resource
they first attempted to access. If their login attempt fails, they will be redirected
to http://host/webAppPrefix/login-error.html.

Listing 3.1 tomcat_dir/conf/tomcat-users.xml (Sample)

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>

<role rolename="lowStatus" />
<role rolename="highStatus" />
<role rolename="nobleSpirited" />
<role rolename="meanSpirited" />

 <user username="valjean" password="forgiven"
roles="lowStatus,nobleSpirited" />

 <user username="bishop" password="mercy"
roles="lowStatus,nobleSpirited" />

 <user username="javert" password="strict"
roles="highStatus,meanSpirited" />

<user username="thenardier" password="grab"
roles="lowStatus,meanSpirited" />

</tomcat-users>

3.1 Form-Based Authentication 111

Creating the Login Page
The login-config element tells the server to use form-based authentication and
to redirect unauthenticated users to a designated page. Fine. But what should you
put in that page? The answer is surprisingly simple: All the login page requires is a
form with an ACTION of j_security_check, a text field named j_username,
and a password field named j_password. And, because using GET defeats the
whole point of password fields (protecting the password from prying eyes looking
over the user’s shoulder), all forms that have password fields should use a METHOD of
POST. You never use GET with password fields because the password would show up
in clear text in the browser’s address bar. Note that j_security_check is a
“magic” name; you don’t preface it with a slash even if your login page is in a subdi-
rectory of the main Web application directory. Listing 3.3 gives an example.

Listing 3.2 web.xml (Excerpt designating form-based authentication)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<security-constraint>...</security-constraint>
<login-config>

 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/login-error.html</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

Listing 3.3 login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>...</TITLE></HEAD>
<BODY>
...
<FORM ACTION="j_security_check" METHOD="POST">
<TABLE>

Chapter 3 ■ Declarative Security112

That was the page for logging in. What about a page for logging out? The session
should time out eventually, but what if users want to log out immediately without
closing the browser? The servlet specification mandates that invalidating the
HttpSession should log users out and cause them to be reauthenticated the next
time they try to access a protected resource. So, you could create a logout page by
making a servlet or JSP page that looks up the session and calls invalidate on it.
This is in contrast to BASIC authentication (see Section 3.3), where logging out is not
supported without the user quitting and restarting the browser.

Restricting Direct Access to the Login Page
As we explained, when an unauthenticated user tries to access a protected resource,
the server automatically redirects to the login page. Unfortunately, the servlet speci-
fication does not force compliant servers to use the “behind-the-scenes” redirecting
(i.e., using the RequestDispatcher.forward method) to the JSP page specified
in the form-login-page element. The servers are free to use the HttpServlet-
Response.sendRedirect method, and some modern servers do. The containers
that use the sendRedirect method expose the full URL of the login page to the
client. The unsuspecting user can later invoke this URL, attempting to either log in
to the application for the first time (the user would not be authenticated yet), log in
under a different username while already logged in, or by simply hitting the browser
back button.

Neither does the servlet specification dictate what compliant servers should do if
the user tries to access the login page directly, as in the outlined scenarios. Therefore,
the outcome is highly server specific. The server might forward the user to a nonex-
isting page, resulting in an HTTP 404 error, or produce some other result not
expected by the user. Obviously, neither of these outcomes is good.

We can partially avoid this unpredictable behavior by placing some logic into the
login page (see Figure 3–1). The logic would need to protect two types of users from
directly accessing the login page: an unauthenticated user (has not logged in yet) and
an authenticated user (tries to access the login page having been logged in already).

<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">
<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">
<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">
</TABLE>
</FORM>
...
</BODY></HTML>

Listing 3.3 login.jsp (continued)

3.1 Form-Based Authentication 113

To protect a user who has already logged in, we would place the following code
into our login.jsp.

<%
response.setHeader("Cache-Control",
 "no-store, no-cache, must-revalidate");
response.setHeader("Pragma", "no-cache");
response.setDateHeader("Expires", -1);
// Check if user is already logged in
if (request.getRemoteUser() != null) {
 response.sendRedirect("logout-confirmation.jsp");
}
%>

The first line, which sets the HTTP version 1.1 response header Cache-Control
to “no-store, no-cache, must-revalidate”, ensures that the user will never
see the browser-cached version of the login page. Similarly, to satisfy HTTP version 1.0,
we also set the Pragma and Expires headers. The next few lines use the
getRemoteUser method, which returns the username of the currently logged-in user.
If the user is not logged in, it returns null. Thus, if getRemoteUser does, in fact,
return a non-null value, we can be sure that this user has already been logged in and
is invoking the login page directly. In this case, we simply redirect the user to some
logout-confirmation.jsp, which gives the user the option to formally logout.

Figure 3–1 When the client tries to access a protected resource, Weblogic 8.1 uses the
response.sendRedirect method to send the client to the login page, exposing the
login page’s URL.

Chapter 3 ■ Declarative Security114

There isn’t really a clean and easy way to protect the unauthenticated user from
directly accessing the login page. One unclean way would be to blindly redirect every
request for the login page to a protected resource (e.g., /protectedA.jsp), causing the
server to trigger the authentication process, and “re-serving” the login page to the cli-
ent as part of that process. This approach would solve the problem of an unauthenti-
cated user directly invoking the login page. However, it would also introduce some
side effects. What would happen if an unauthenticated user attempts to invoke
another protected resource, /protectedB.jsp? The server would serve the login page,
and if the login is successful, the user would be forwarded to /protectedA.jsp. How-
ever, the user asked to go to /protectedB.jsp! The logged in but frustrated user would
now be forced to once again navigate through your Web site to get to /protectedB.jsp.

So, if your Web application is to be deployed on a server that uses send-
Redirect to forward the user to the login page, you have to decide which side
effect is more detrimental to your application and adjust accordingly.

More important, the problem with all the discussed approaches is that they are
forcing you to write security-related code, which is antithetical to the declarative
security model.

Creating the Page to Report
Failed Login Attempts

The log in page mus t conta in a fo rm with a spe c ia l - purpo se ACTION
(j_security_check), a text field with a special name (j_username), and a pass-
word field with yet another reserved name (j_password). When the user attempts
to access a protected resource, the server automatically presents the login page. The
user fills out the login form and submits it. If the presented credentials (e.g., user-
name and password) are those of a legal user but the user does not belong to the cat-
egory of users able to access the requested resource, the server will reject the request
with an HTTP error code 403 Forbidden. Remember that using the deployment
descriptor, you can specify a custom page to be displayed when an HTTP error
occurs. For details see Section 2.9 (Designating Pages to Handle Errors).

However, if the username and password are not those of a legal user, the server
will automatically send the user to the login-failure page specified in the
form-error-page element.

So, what is required to be in the login-failure page? Nothing! This page is arbi-
trary; it can contain a link to an unrestricted section of the Web application or a sim-
ple “login failed” message.

3.1 Form-Based Authentication 115

Specifying URLs That Should Be
Password Protected

The login-config element tells the server which authentication method to use.
Good, but how do you designate the specific URLs to which access should be
restricted? Designating restricted URLs and describing the protection they should
have is the purpose of the security-constraint element.

The security-constraint element contains four possible subelements: dis-
play-name (an opt iona l e lem ent g iv ing a name for IDEs to use) ,
web-resource-collection (a required element that specifies the URLs that should
be protected), auth-constraint (an optional element that designates the abstract
roles that should have access to the URLs), and user-data-constraint (an optional
e le ment tha t spe ci f ies whe ther SSL i s requ ire d) . Note tha t m ult ip le
web-resource-collection entries are permitted within security-constraint.

For a quick example of the use of security-constraint, Listing 3.4 instructs
the server to require passwords for all URLs of the form http://host/webAppPrefix/

sensitive/blah. Users who supply passwords and belong to the administrator or
executive logical roles should be granted access; all others should be denied access.
The rest of this subsection provides details on the web-resource-collection,
auth-constraint, and display-name elements. The role of user-data-
constraint is explained in a later subsection (Specifying URLs That Should Be
Available Only with SSL).

Listing 3.4 web.xml (Excerpt specifying protected URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <security-constraint>

<web-resource-collection>
 <web-resource-name>Sensitive</web-resource-name>
 <url-pattern>/sensitive/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

<login-config>...</login-config>
</web-app>

Chapter 3 ■ Declarative Security116

web-resource-collection
This subelement of security-constraint identifies the resources that
should be protected. Each security-constraint element must contain
one or more web-resource-collection entries; all other security-
constraint subelements are optional. The web-resource-collection
element consists of a web-resource-name element that gives an arbitrary
identifying name, a url-pattern element that identifies the URLs that
should be protected, an optional http-method element that designates the
HTTP commands to which the protection applies (GET, POST, etc.; the default
is all methods), and an optional description element providing documenta-
tion. For example, the following web-resource-collection entries
(within a security-constraint element) specify that password protection
should be applied to all documents in the proprietary directory (and subdirec-
tories thereof) and to the delete-account.jsp page in the admin directory.
Because security constraints apply to request the URL, not the physical direc-
tory, this security constraint would equally apply to any servlets mapped to URLs
that contain the proprietary directory in them. For example, a servlet mapped
with a pattern /proprietary/CompanySecretOfTheDayServlet would
likewise be protected by the following security constraint:

<security-constraint>
<web-resource-collection>

<web-resource-name>Proprietary</web-resource-name>
<url-pattern>/proprietary/*</url-pattern>

</web-resource-collection>
<web-resource-collection>

<web-resource-name>Account Deletion</web-resource-name>
<url-pattern>/admin/delete-account.jsp</url-pattern>

</web-resource-collection>
<!-- ... -->

</security-constraint>

When protecting form submissions, it’s important that you protect the page that
has the form as well as the servlet that the form submits to. A common mistake
is to protect only the form and leave the servlet unprotected. This oversight lets
the users bypass the form, either deliberately or accidentally (e.g., by following a
bookmark), and access the servlet without being authenticated.

Core Warning

When protecting form submissions, make sure to protect the servlet that
the form submits to in addition to the form page itself.

3.1 Form-Based Authentication 117

It is also important to note that the url-pattern applies only to clients that
access the resources directly. In particular, it does not apply to pages that are
accessed through the MVC architecture with a RequestDispatcher (see
Chapter 15 of Volume 1) or by the similar means of jsp:forward or
jsp:include (see Chapter 13 of Volume 1). This asymmetry is good if used
properly. For example, with the MVC architecture a servlet looks up data,
places it in beans, and forwards the request to a JSP page that extracts the data
from the beans and displays it. You want to ensure that the JSP page is never
accessed directly but instead is accessed only through the servlet that sets up the
beans the page will use. The url-pattern and auth-constraint (see next
subsection) elements can provide this guarantee by declaring that no user is
permitted direct access to the JSP page. Note, however, that the simpler
approach to this problem is to place the JSP pages inside the WEB-INF directory.
This asymmetric behavior can catch developers off guard and allow
them to accidentally provide unrestricted access to resources that should be
protected.

Core Warning

These protections apply only to direct client access. The security model
does not apply to pages accessed by means of a RequestDispatcher,
jsp:forward, or jsp:include.

auth-constraint
Whereas the web-resource-collection element designates the URLs
that should be protected, the auth-constraint element designates the
users who should have access to these resources. It should contain one or more
role-name elements identifying the class of users that have access and,
optionally, a description element describing the role. For instance, the fol-
lowing part of the security-constraint element in web.xml states that
only users who are designated as either Administrators or Big Kahunas (or
both) should have access to the designated resource.

<security-constraint>
<web-resource-collection>...</web-resource-collection>
<auth-constraint>

<role-name>administrator</role-name>
<role-name>kahuna</role-name>

</auth-constraint>
</security-constraint>

Chapter 3 ■ Declarative Security118

If you want all authenticated users to have access to a resource, use * as the
role-name. To restrict anyone from accessing a group of resources, use an
empty auth-constraint element (e.g., <auth-constraint/>). The
empty auth-constraint element means that no roles have access. Although
at first glance it appears pointless to deny access to all users, remember that
these security restrictions apply only to direct client access. So, for example,
suppose you had a JSP snippet that is intended to be inserted into another file
with jsp:include (see Chapter 13 of Volume 1). Or, suppose you have a JSP
page that is the forwarding destination of a servlet that is using a Request-
Dispatcher as part of the MVC architecture (see Chapter 15 of Volume 1).
In both cases, users should be prohibited from directly accessing the JSP page.
A security-constraint element with an empty auth-constraint ele-
ment would enforce this restriction. However, as we mentioned, placing such
resources inside the WEB-INF directory is the simpler solution.

display-name
This rarely used optional subelement of security-constraint gives a
name to the security constraint entry. This name might be used by an IDE or
other graphical tool.

Listing All Possible Abstract Roles
The servlet specification requires that all possible abstract roles are listed within the
web.xml file. This means that any role used within any of the security-constraint
elements must be separately declared. You declare the abstract roles using one or
more security-role elements. Each security-role element contains an
optional description element and a required role-name element. For example,
suppose you had one security-constraint element with auth-constraint
entries for teacher and student, another security-constraint element
with auth-constraint entries for teacher and principal, and a third
security-constraint element with auth-constraint entries for principal,
administrator, and dean. You would then use security-role elements to list
the unique names as follows:

<security-role>
<role-name>teacher</role-name>

</security-role>
<security-role>

<role-name>student</role-name>
</security-role>
<security-role>

<role-name>principal</role-name>
</security-role>
<security-role>

3.1 Form-Based Authentication 119

<role-name>administrator</role-name>
</security-role>
<security-role>

<role-name>dean</role-name>
</security-role>

Specifying URLs That Should Be
Available Only with SSL

Suppose your servlet or JSP page collects credit card numbers. User authentication
keeps out unauthorized users but does nothing to protect the network traffic. So, for
instance, an attacker who runs a packet sniffer on the end user’s LAN could see that
user’s credit card number. This scenario is exactly what SSL protects against—it
encrypts the traffic between the browser and the server.

Use of SSL does not change the basic way that form-based authentication works.
Regardless of whether you are using SSL, you use the login-config element to
indicate that you are using form-based authentication and to identify the login and
login-failure pages. With or without SSL, you designate the protected resources with
the url-pattern subelement of web-resource-collection. None of your
servlets or JSP pages need to be modified or moved to different locations when you
enable or disable SSL. That’s the beauty of declarative security.

The user-data-constraint subelement of security-constraint can
mandate that certain resources be accessed only with SSL. So, for example, attempts
to access https://host/webAppPrefix/specialURL are handled normally, whereas
attempts to access http://host/webAppPrefix/specialURL are redirected to the https
URL. This behavior does not mean that you cannot supply an explicit https URL for
a hypertext link or the ACTION of a form; it just means that you aren’t required to.
You can stick with the simpler and more easily maintained relative URLs and still be
assured that certain URLs will only be accessed with SSL.

The user-data-constraint element, if used, must contain a transport-
guarantee subelement (with legal values NONE, INTEGRAL, or CONFIDENTIAL) and
can optionally contain a description element. A value of NONE for transport-
guarantee puts no restrictions on the communication protocol used. Because
NONE is the default, there is little point in using user-data-constraint or
transport-guarantee if you specify NONE. A value of INTEGRAL means that the
communication must be of a variety that prevents data from being changed in transit
without detection. A value of CONFIDENTIAL means that the data must be transmit-
ted in a way that prevents anyone who intercepts it from reading it. Although in prin-
ciple (and perhaps in future HTTP versions) there may be a distinction between
INTEGRAL and CONFIDENTIAL, in current practice they both simply mandate the
use of SSL.

Chapter 3 ■ Declarative Security120

For example, the following instructs the server to permit only https connections to
the associated resource:

<security-constraint>
<!-- ... -->
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>

In addition to simply requiring SSL, the servlet API provides a way to stipulate
that users must authenticate themselves with client certificates. You supply a value of
CLIENT-CERT for the auth-method subelement of login-config (discussed
earlier in this section). However, only servers that have full J2EE support are
required to support this capability.

Now, although the method of prohibiting non-SSL access is standardized, servers
that are compliant with the servlet 2.4 and JSP 2.0 specifications are not required to
support SSL. So, Web applications that use a transport-guarantee of CONFI-
DENTIAL (or, equivalently, INTEGRAL) are not necessarily portable. For example,
JRun and ServletExec are usually used as plug-ins in Web servers like Apache or
Internet Information Server (IIS). In this scenario, the network traffic between the
client and the Web server is encrypted with SSL, but the local traffic from the Web
server to the servlet/JSP container is not encrypted. Consequently, a CONFIDEN-
TIAL transport-guarantee will fail. Tomcat, however, can be set up to use SSL
directly. Details on this process are given in Section 3.5 (Configuring Tomcat to Use
SSL). Some server plug-ins maintain SSL even on the local connection between the
main Web server and the servlet/JSP engine; for example, the BEA WebLogic
plug-in for IIS, Apache, and Netscape Enterprise Server does so. Furthermore, inte-
grated application servers like the standalone version of WebLogic have no “sepa-
rate” servlet and JSP engine, so SSL works exactly as described here. Nevertheless, it
is important to realize that these features, although useful, are not mandated by the
servlet and JSP specifications.

Core Warning

Web applications that rely on SSL are not necessarily portable.

Turning Off the Invoker Servlet
When you restrict access to certain resources, you do so by specifying the URL pat-
terns to which the restrictions apply. This pattern, in turn, matches a pattern that you
set with the servlet-mapping web.xml element. See Section 2.4 (Assigning

3.1 Form-Based Authentication 121

Names and Custom URLs). However, most servers use an “invoker servlet” that pro-
vides a default URL for servlets: http://host/webAppPrefix/servlet/ServletName. You
need to make sure that users don’t access protected servlets with this URL, thus
bypassing the access restrictions that were set by the url-pattern subelement of
web-resource-collection.

For example, suppose that you use security-constraint, web-resource-
collection, and url-pattern to say that the URL /admin/DeclareChapter3

should be protected. You also use the auth-constraint and role-name ele-
ments to say that only users in the director role can access this URL. Next, you
use the servlet and servlet-mapping elements to say that the servlet
BankruptcyServlet.class in the disaster package should correspond to /admin/

DeclareChapter3. Now, the security restrictions are in force when clients use the
URL http://host/webAppPrefix/admin/DeclareChapter3. No restrictions apply to
http://host/webAppPrefix/servlet/disaster.BankruptcyServlet. Oops.

Section 2.5 (Disabling the Invoker Servlet) discusses server-specific approaches to
turning off the invoker. The most portable approach, however, is to simply remap the
/servlet/* pattern in your Web application so that all requests that include the
pattern are sent to the same servlet. To remap the pattern, you first create a simple
servlet that prints an error message or redirects users to the top-level page. Then,
you use the servlet and servlet-mapping elements (Section 2.4) to send
requests that include the /servlet/* pattern to that servlet. Listing 3.5 gives a
brief example.

Listing 3.5
web.xml (Excerpt redirecting requests from default servlet
URLs to an error-message servlet)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 3 ■ Declarative Security122

3.2 Example: Form-Based
Authentication

In this section we work through a small Web site for a fictional company called
hot-dot-com.com. We’ll start by showing the home page, then list the web.xml file,
summarize the various protection mechanisms, show the password file, present the
login and login-failure pages, and give the code for each of the protected resources.

The Home Page
Listing 3.6 shows the top-level home page for the Web application. The application is
registered with a URL prefix of /hotdotcom so the home page can be accessed with
the URL http://host/hotdotcom/index.jsp as shown in Figure 3–2. If you’ve forgot-
ten how to assign URL prefixes to Web applications, review Section 2.4 (Assigning
Names and Custom URLs).

Now, the main home page has no security protections and consequently does
not absolutely require an entry in web.xml. However, many users expect URLs that
list a directory but no file to invoke the default file from that directory and
index.jsp is not absolutely guaranteed to be used as one of the default file names.
So, we put a welcome-file-list entry in web.xml (see Listing 3.7 in the next
section) to ensure that http://host/hotdotcom/ would invoke index.jsp.

Listing 3.6 index.jsp (Top-level home page)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>hot-dot-com.com!</TITLE>
<LINK REL=STYLESHEET
 HREF="company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">hot-dot-com.com!</TABLE>
<P>
<H3>Welcome to the ultimate dot-com company!</H3>
Please select one of the following:

3.2 Example: Form-Based Authentication 123

Figure 3–2 Home page for hot-dot-com.com.

The Deployment Descriptor
Listing 3.7 shows the complete deployment descriptor used with the hotdotcom
Web application.

The hotdotcom deployment descriptor specifies several things:

• URLs that give a directory but no filename result in the server first
trying to use index.jsp and next trying index.html. If neither file is
available, the result is server specific (e.g., a directory listing).

• URLs that use the default servlet mapping (i.e., http://host/
hotdotcom/servlet/ServletName) invoke the NoInvokerServlet and
display a message telling the user that the invoker servlet has been
disabled.

 Investing.
 Guaranteed growth for your hard-earned dollars!
 Business Model.
 New economy strategy!
 History.
 Fascinating company history.

</BODY></HTML>

Listing 3.6 index.jsp (Top-level home page) (continued)

Chapter 3 ■ Declarative Security124

• Requests to http://host/hotdotcom/ssl/buy-stock.jsp are
redirected to https://host/hotdotcom/ssl/buy-stock.jsp. Requests
directly to https://host/hotdotcom/ssl/buy-stock.jsp require no
redirection. Similarly, requests to http://host/hotdotcom/ssl/

FinalizePurchase are redirected to https://host/hotdotcom/ssl/

FinalizePurchase. See Section 3.5 (Configuring Tomcat to Use SSL)
for information on setting up Tomcat to use SSL.

• URLs in the investing “directory” (really incoming URL pattern) can
be accessed only by users in the registered-user or
administrator roles.

• The delete-account.jsp page in the admin directory can be accessed
only by users in the administrator role.

• Requests for restricted resources by unauthenticated users are
redirected to the login.jsp page in the admin directory. Users who are
authenticated successfully get sent to the page they tried to access
originally. Users who fail authentication are sent to the login-error.jsp
page in the admin directory.

Listing 3.7
WEB-INF/web.xml
(Complete version for hot-dot-com.com)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Give name to FinalizePurchaseServlet. This servlet
 is mapped to the URL /ssl/FinalizePurchase
 (by means of servlet-mapping and url-pattern).
 Then, that URL will later be designated as one requiring
 SSL (by means of security-constraint and
 transport-guarantee). -->
 <servlet>
 <servlet-name>
 FinalizePurchaseServlet
 </servlet-name>
 <servlet-class>
 hotdotcom.FinalizePurchaseServlet
 </servlet-class>
 </servlet>

3.2 Example: Form-Based Authentication 125

 <servlet-mapping>
 <servlet-name>
 FinalizePurchaseServlet
 </servlet-name>
 <url-pattern>
 /ssl/FinalizePurchase
 </url-pattern>
 </servlet-mapping>

 <!-- Servlet to logout the user. -->
 <servlet>
 <servlet-name>Logout</servlet-name>
 <servlet-class>hotdotcom.LogoutServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Logout</servlet-name>
 <url-pattern>/admin/logout</url-pattern>
 </servlet-mapping>

 <error-page>
 <error-code>403</error-code>
 <location>/WEB-INF/jspPages/forbidden.jsp</location>
 </error-page>

 <!-- Protect everything within the "investing" directory. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Investing</web-resource-name>
 <url-pattern>/investing/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>registered-user</role-name>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- URLs of the form http://host/webAppPrefix/ssl/blah
 require SSL and are thus redirected to
 https://host/webAppPrefix/ssl/blah. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Purchase</web-resource-name>
 <url-pattern>/ssl/*</url-pattern>
 </web-resource-collection>

Listing 3.7
WEB-INF/web.xml
(Complete version for hot-dot-com.com) (continued)

Chapter 3 ■ Declarative Security126

 <auth-constraint>
 <role-name>registered-user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <!-- Only users in the administrator role can access
 the delete-account.jsp page within the admin
 directory. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Account Deletion</web-resource-name>
 <url-pattern>/admin/delete-account.jsp</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Declare security roles used in this app. -->
 <security-role>
 <role-name>administrator</role-name>
 </security-role>
 <security-role>
 <role-name>registered-user</role-name>
 </security-role>

 <!-- Tell the server to use form-based authentication. -->
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/admin/login.jsp</form-login-page>
 <form-error-page>/admin/login-error.jsp</form-error-page>
 </form-login-config>
 </login-config>

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

Listing 3.7
WEB-INF/web.xml
(Complete version for hot-dot-com.com) (continued)

3.2 Example: Form-Based Authentication 127

The Password File
With form-based authentication, the server (container) performs a lot of the work for
you. That’s good. However, shifting so much work to the server means that there is a
server-specific component: the assignment of passwords and roles to individual users
(see Section 3.1).

Listing 3.8 shows the password file used by Tomcat for this Web application. It
defines four users: john (in the registered-user role), jane (also in the
registered-user role), juan (in the administrator role), and juana (in the
registered-user and administrator roles).

 <!-- If URL gives a directory but no filename, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 3.8 install_dir/conf/tomcat-users.xml (First four users)

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="registered-user" />
 <role rolename="administrator" />

 <user username="john" password="nhoj"
 roles="registered-user" />
 <user username="jane" password="enaj"
 roles="registered-user" />
 <user username="juan" password="nauj"
 roles="administrator" />
 <user username="juana" password="anauj"
 roles="administrator,registered-user" />
</tomcat-users>

Listing 3.7
WEB-INF/web.xml
(Complete version for hot-dot-com.com) (continued)

Chapter 3 ■ Declarative Security128

The Login and Login-Failure Pages
This Web application uses form-based authentication. Attempts by not-yet-authenti-
cated users to access any password-protected resource will be sent to the login.jsp
page in the admin directory. This page, shown in Listing 3.9, collects the username in
a field named j_username and the password in a field named j_password. The
results are sent by POST to a resource called j_security_check. Successful login
attempts are redirected to the page that was originally requested. Failed attempts are
redirected to the login-error.jsp page in the admin directory (Listing 3.10). Note that
the login.jsp page also contains the code to prevent an already logged-in user from
accessing the login page directly. This code is discussed in Section 3.1 (Form-Based
Authentication).

Listing 3.9 admin/login.jsp

<%
response.setHeader("Cache-Control",
 "no-store, no-cache, must-revalidate");
response.setHeader("Pragma", "no-cache");
response.setDateHeader("Expires", -1);

// Check if user is already logged in
if (request.getRemoteUser() != null) {
 response.sendRedirect("logoutConfirmation.jsp");
}
%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Log In</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Log In</TABLE>
<P>
<H3>Sorry, you must log in before accessing this resource.</H3>
<FORM ACTION="j_security_check" METHOD="POST">

3.2 Example: Form-Based Authentication 129

The investing Directory
The web.xml file for the hotdotcom Web application (Listing 3.7) specifies that all
URLs that begin with http://host/hotdotcom/investing/ should be password pro-
tected, accessible only to users in the registered-user role. So, the first attempt
by any user to access the home page of the investing directory (see Listing 3.11)
results in the login form shown earlier in Listing 3.9. Figure 3–3 shows the initial
result, Figure 3–4 shows the result of an unsuccessful login attempt, and Figure 3–5
shows the investing home page—the result of a successful login.

Once authenticated, a user can browse other pages and return to a protected page
without reauthentication. Selecting the link to the account status page (see Listing 3.12)
does not result in reauthentication, even if the user has accessed other pages since being
authenticated. Figure 3–6 shows the successful access to the account status page, without
being asked for the username and password again. The system uses some variation of ses-
sion tracking to remember which users have previously been authenticated.

<TABLE>
<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">
<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">
<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">
</TABLE>
</FORM>
</BODY>
</HTML>

Listing 3.10 admin/login-error.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Begone!</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Begone!</TABLE>

<H3>Begone, ye unauthorized peon.</H3>
</BODY></HTML>

Listing 3.9 admin/login.jsp (continued)

Chapter 3 ■ Declarative Security130

Listing 3.11 investing/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Investing</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Investing</TABLE>
<H3><I>hot-dot-com.com</I> welcomes the discriminating investor!
</H3>
Please choose one of the following:

 Buy stock.
 Astronomic growth rates!
 Check account status.
 See how much you've already earned!

</BODY></HTML>

Listing 3.12 investing/account-status.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Account Status</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Account Status</TABLE>
<P>
<H3>Your stock is basically worthless now.</H3>
But, hey, that makes this a buying opportunity.
Why don't you buy
some more?
</BODY></HTML>

3.2 Example: Form-Based Authentication 131

Figure 3–3 Users who are not yet authenticated get redirected to the login page when
they attempt to access the investing page.

Figure 3–4 Failed login attempts result in the login-error.jsp page.

Chapter 3 ■ Declarative Security132

Figure 3–5 Successful login attempts result in redirection back to the originally
requested page.

Figure 3–6 Selecting the Account Status link on the investing home page does not result
in reauthentication, even if the user has accessed other pages since being authenticated.
The system uses a variation of session tracking to remember which users have already been
authenticated.

The ssl Directory
The stock purchase page (Listings 3.13 and 3.14) submits data to the purchase final-
ization servlet (Listing 3.15), which, in turn, dispatches to the confirmation page
(Listing 3.16).

3.2 Example: Form-Based Authentication 133

Note that the purchase finalization servlet is not really in the ssl directory; it is in
WEB-INF/classes/hotdotcom. However, the deployment descriptor (Listing 3.7) uses
servlet-mapping to assign a URL that makes the servlet appear (to the client) to
be in the ssl directory. This mapping serves two purposes.

First, it lets the HTML form of Listing 3.13 use a simple relative URL to refer to
the servlet. This is convenient because absolute URLs require modification every
time your hostname or URL prefix changes. However, if you use this approach, it is
important that both the original form and the servlet it talks to are accessed with
SSL. If the original form used a relative URL for the ACTION and was accessed with
a normal HTTP connection, the browser would first submit the data by HTTP and
then get redirected to HTTPS. Too late: An attacker with access to the network traf-
fic could have obtained the data from the initial HTTP request. On the other hand, if
the ACTION of a form is an absolute URL that uses https, it is not necessary for the
original form to be accessed with SSL.

Core Warning

When using SSL with relative URLs, secure the URL of the form page
besides the URL of the servlet.

Second, using servlet-mapping in this way guarantees that SSL will be used to
access the servlet, even if the user tries to bypass the HTML form and access the serv-
let URL directly. This guarantee is in effect because the transport-guarantee
element (with a value of CONFIDENTIAL) applies to the pattern /ssl/*. Figures 3–7
through 3–9 show the results.

We already explained that absolute URLs specifying https are significantly harder
to maintain. However, if you are concerned about overloading your SSL server
(HTTPS connections are much slower than HTTP connections), you could use this
approach to gain some efficiency.

Listing 3.13 ssl/buy-stock.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Purchase</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>

Chapter 3 ■ Declarative Security134

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Purchase</TABLE>
<P>
<H3><I>hot-dot-com.com</I> congratulates you on a wise
investment!</H3>
<jsp:useBean id="stock" class="hotdotcom.StockInfo" />

 Current stock value: ${stock.currentValue}
 Predicted value in one year: ${stock.futureValue}

<FORM ACTION="FinalizePurchase" METHOD="POST">
 <DL>
 <DT>Number of shares:
 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="1000">
 1000
 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="10000">
 10000
 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="100000"
 CHECKED>
 100000
 </DL>
 Full name: <INPUT TYPE="TEXT" NAME="fullName">

 Credit card number: <INPUT TYPE="TEXT" NAME="cardNum"><P>
 <CENTER><INPUT TYPE="SUBMIT" VALUE="Confirm Purchase"></CENTER>
</FORM>
</BODY></HTML>

Listing 3.14
WEB-INF/classes/hotdotcom/StockInfo.java
(Bean used by buy-stock.jsp)

package hotdotcom;

public class StockInfo {
 public String getCurrentValue() {
 return("$2.00");
 }

 public String getFutureValue() {
 return("$200.00");
 }
}

Listing 3.13 ssl/buy-stock.jsp (continued)

3.2 Example: Form-Based Authentication 135

Listing 3.15 WEB-INF/classes/hotdotcom/FinalizePurchaseServlet.java

package hotdotcom;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that reads credit card information,
 * performs a stock purchase, and displays confirmation page.
 */

public class FinalizePurchaseServlet extends HttpServlet {

 /** Use doPost for non-SSL access to prevent
 * credit card number from showing up in URL.
 */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String fullName = request.getParameter("fullName");
 String cardNum = request.getParameter("cardNum");
 confirmPurchase(fullName, cardNum);
 String destination = "/investing/sucker.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(destination);
 dispatcher.forward(request, response);
 }

 /** doGet calls doPost. Servlets that are
 * redirected to through SSL must have doGet.
 */

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doPost(request, response);
 }

 private void confirmPurchase(String fullName,
 String cardNum) {
 // Details removed to protect the guilty.
 }
}

Chapter 3 ■ Declarative Security136

Figure 3–7 Warning when user first accesses FinalizePurchaseServlet when
Tomcat is using a self-signed certificate. Self-signed certificates result in warnings and are
for test purposes only. See Section 3.5 (Configuring Tomcat to Use SSL) for details on
creating them for use with Tomcat and for information on suppressing warnings for future
requests.

Listing 3.16
investing/sucker.jsp
(Dispatched to from FinalizePurchaseServlet.java)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Thanks!</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Thanks!</TABLE>
<H3><I>hot-dot-com.com</I> thanks you for your purchase.</H3>
You'll be thanking yourself soon!
</BODY></HTML>

3.2 Example: Form-Based Authentication 137

Figure 3–8 The stock purchase
page must be accessed with SSL.
Because the form’s ACTION uses a
simple relative URL, the initial form
submission uses the same protocol as
the request for the form itself.

Figure 3–9 To protect the credit
card number in transit, you must
use SSL to access the Finalize-
Purchase servlet. Although
FinalizePurchaseServlet
dispatches to sucker.jsp, no
web.xml entry is needed for that
JSP page. Access restrictions apply
to the client’s URL, not to the
behind-the-scenes file locations.

Chapter 3 ■ Declarative Security138

The admin Directory
URLs in the admin directory are not uniformly protected as are URLs in the invest-
ing directory. We already discussed the login and login-failure pages (Listings 3.9 and
3.10, Figures 3–3 and 3–4). This just leaves the Delete Account page (Listing 3.17).
This page has been designated as accessible only to users in the administrator
role. So, when users that are only in the registered-user role attempt to access
the page, they are denied permission (see Figure 3–10). Note that the permis-
sion-denied page of Figure 3–10 can generated automatically by the server. Because
it’s more user-friendly, we configure our application to send the custom forbidden.jsp
page instead of the Tomcat’s standard permission-denied page. We can accomplish
this configuration using the error-page element like so:

<error-page>
 <error-code>403</error-code>
 <location>/WEB-INF/jspPages/forbidden.jsp</location>
</error-page>

For more detail on setting up error pages see Section 2.9 (Designating Pages to Han-
dle Errors). The code for the custom error page forbidden.jsp is shown in Listing 3.18.

This scenario applies to authenticated users whose roles do not match any of the
required ones—it is not the same as the login error page that applies to users who
cannot be authenticated.

A user in the administrator role can access the page without difficulty (Figure
3–11).

Listing 3.17 admin/delete-account.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Delete Account</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Delete Account</TABLE>
<P>
<FORM ACTION="confirm-deletion.jsp">
 Username: <INPUT TYPE="TEXT" NAME="userName">

 <CENTER><INPUT TYPE="SUBMIT" VALUE="Confirm Deletion"></CENTER>
</FORM>
</BODY></HTML>

3.2 Example: Form-Based Authentication 139

Listing 3.18 WEB-INF/jspPages/forbidden.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>FORBIDDEN!</TITLE>
<LINK REL=STYLESHEET
 HREF="${pageContext.request.contextPath}/company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">FORBIDDEN!</TABLE>
<H3 style="text-align: center;">Who do you think you are?!</H3>
</BODY></HTML>

Figure 3–10 When John and
Jane attempt to access the
Delete Account page, they are
denied (even though they are
authenticated). That’s because
they belong to the registered-
user role and the web.xml file
stipulates that only users in the
administrator role should be
able to access this page.

Figure 3–11 Once authen-
ticated, Juan or Juana (in the
administrator role) can
access the Delete Account page.

Chapter 3 ■ Declarative Security140

The NoInvoker Servlet
Web applications that have protected servlets should always disable the invoker serv-
let so that users cannot bypass security by using http://host/webAppPrefix/servlet/
ServletName when the access restrictions are assigned to a custom servlet URL. In
the hotdotcom application, we used the servlet and servlet-mapping ele-
ments to register the NoInvokerServlet with requests to http://host/hotdotcom/

servlet/anything. This servlet, shown in Listing 3.19, simply displays a message to the
user that the invoker servlet has been disabled.

Listing 3.19
WEB-INF/classes/coreservlets/
NoInvokerServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to give error messages to
 * users who try to access default servlet URLs
 * (i.e., http://host/webAppPrefix/servlet/ServletName)
 * in Web applications that have disabled this
 * behavior.
 */

public class NoInvokerServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Invoker Servlet Disabled.";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>" + title + "</H2>\n" +
 "Sorry, access to servlets by means of\n" +
 "URLs that begin with\n" +
 "http://host/webAppPrefix/servlet/\n" +

3.2 Example: Form-Based Authentication 141

Unprotected Pages
The fact that some pages in a Web application have access restrictions does not imply
that all pages in the application need such restrictions. Resources that have no access
restrictions need no special handling regarding security. There are two points to keep
in mind, however.

First, if you use default pages such as index.jsp or index.html, you should have an
explicit welcome-file-list entry in web.xml. Without a welcome-file-list
entry, servers are not required to use those files as the default file when a user sup-
plies a URL that gives only a directory. See Section 2.8 (Specifying Welcome Pages)
for details on the welcome-file-list element.

Second, you should use relative URLs to refer to images or style sheets so that
your pages don’t need modification if the Web application’s URL prefix changes.

The application of these points is demonstrated in Listing 3.20 and Figure 3–12
and in Listing 3.21 and Figure 3–13.

 "has been disabled.\n" +
 "</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 3.20 business/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Business Model</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>

Listing 3.19
WEB-INF/classes/coreservlets/
NoInvokerServlet.java (continued)

Chapter 3 ■ Declarative Security142

Figure 3–12 The hotdotcom business model.

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Business Model</TABLE>
<P>
<H3>Who needs a business model?</H3>
Hey, this is the new economy. We don't need a real business
model, do we?
<P>
OK, ok, if you insist:

 Start a dot-com.
 Have an IPO.
 Get a bunch of suckers to work for peanuts
 plus stock options.
 Retire.

Isn't that what many other dot-coms did?
</BODY></HTML>

Listing 3.20 business/index.html (continued)

3.3 BASIC Authentication 143

Figure 3–13 The distinguished hotdotcom heritage.

3.3 BASIC Authentication

The most common type of container-managed security is built on form-based
authentication, discussed in Section 3.1 (Form-Based Authentication). There, the
server automatically redirects unauthenticated users to an HTML form, checks
their username and password, determines which logical roles they are in, and sees
whether any of those roles is permitted to access the resource in question. Then, it
uses a variation of session tracking to remember the users that have already been
authenticated.

Listing 3.21 history/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>History</TITLE>
<LINK REL=STYLESHEET
 HREF="../company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">History</TABLE>
<P>
<H3>None yet...</H3>
</BODY></HTML>

Chapter 3 ■ Declarative Security144

This approach has the advantage that the login form can have the same look and
feel as the rest of the Web site. However, it has a few disadvantages. For example, if
the client’s browser has cookies disabled, session tracking would fail. Or, the server
might be configured to always use URL rewriting. The servlet specification explicitly
states that form-based authentication is not guaranteed to work in such a case.

So, another approach is to use the standard HTTP BASIC security. With BASIC
security, the browser uses a dialog box instead of an HTML form to collect the user-
name and password. Then, the Authorization request header is used to remem-
ber which users have already been authenticated. As with form-based security, you
must use SSL if you are concerned with protecting the network traffic. However,
doing so neither changes the way BASIC authentication is set up nor necessitates
changes in the individual servlets or JSP pages.

Because there is no login or login-error page to create and configure, another
advantage of BASIC authentication is that it’s easier to set up. The absence of the
login page also means not with having to handle the user trying to access the login
page directly as discussed in Section 3.1 (Form-Based Authentication). In reality,
most Web sites intended for external customers (e.g., e-commerce sites) use
form-based authentication, whereas intranet applications often use BASIC.

There is also DIGEST security and security based on client certificates. However,
few browsers or servers support DIGEST, and only fully J2EE-compliant servers are
required to support client certificates.

Compared to form-based authentication, the two main disadvantages of BASIC
authentication are that the input dialog box looks glaringly different than the rest
of your application and it is very difficult to log in as a different user once you are
authenticated. In fact, once authenticated, you have to quit the browser and
restart if you want to log in as a different user! Now, in principle it is possible to
write a “relogin” servlet that sends a 401 (Unauthorized) status code and a
WWW-Authenticate header containing the appropriate realm. But, that is hardly
“declarative” security!

Use of BASIC security involves six steps, as shown next. Each of the steps except for
the second is identical to the corresponding step used in form-based authentication.

1. Set up usernames, passwords, and roles. In this step, you desig-
nate a list of users and associate each with a password and one or more
abstract roles (e.g., normal user, administrator, etc.). This is a com-
pletely server-specific process.

2. Tell the server that you are using BASIC authentication.
Designate the realm name. This process uses the web.xml

login-config element with an auth-method subelement of
BASIC and a realm-name subelement that specifies the realm
(which is generally used as part of the title of the dialog box that the
browser opens).

3.3 BASIC Authentication 145

3. Specify which URLs should be password protected. For this
step, you use the security-constraint element of web.xml.
This element, in turn, uses web-resource-collection and
auth-constraint subelements. The first of these designates the
URL patterns to which access should be restricted, and the second
specifies the abstract roles that should have access to the resources at
the given URLs.

4. List all possible abstract roles (types of users) that will be
granted access to any resource. Each abstract role is declared
using the security-role element. The security-role element
contains a required role-name element, which contains the name of
the abstract role.

5. Specify which URLs should be available only with SSL. If your
server supports SSL, you can stipulate that certain resources are avail-
able only through encrypted https (SSL) connections. You use the
user-data-constraint subelement of security-constraint
for this purpose.

6. Turn off the invoker servlet. If your application restricts access
to servlets, the access restrictions are placed only on the custom
URL that you associate with the servlet. To prevent users from
bypassing the security settings, disable default servlet URLs of the
form http://host/webAppPrefix/servlet/ServletName. To disable
these URLs, use the servlet-mapping element with a url-
pattern subelement that designates a pattern of /servlet/*.

Details on these steps are given in the following sections.

Setting Up Usernames, Passwords, and Roles
This step is exactly the same when BASIC authentication is used as when form-based
authentication is used. See Section 3.1 (Form-Based Authentication) for details. For a
quick summary, recall that this process is completely server specific. Tomcat lets you
use tomcat_dir/conf/tomcat-users.xml simple test applications.

Telling the Server You Are Using BASIC
Authentication; Designating Realm

You use the login-config element in the deployment descriptor to control the
authentication method. To use BASIC authentication, supply a value of BASIC for
the auth-method subelement and use the realm-name subelement to designate
the realm that will be used by the browser in the pop-up dialog box and in the
Authorization request header. Listing 3.22 gives an example.

Chapter 3 ■ Declarative Security146

Specifying URLs That
Should Be Password Protected

You designate password-protected resources in the same manner with BASIC authen-
tication as you do with form-based authentication. See Section 3.1 (Form-Based
Authentication) for details. For a quick summary, you use the security-
constraint element to specify restricted URLs and the roles that should have
access to them. The security-constraint element contains four possible
subelements: display-name (an optional element giving a name for IDEs to
use), web-resource-collection (a required element that specifies the URLs
that should be protected), auth-constraint (an optional element that desig-
na te s the ab s t rac t ro le s tha t sho u l d ha ve a cce s s t o the U RL s) , a nd
user-data-constraint (an optional element that specifies whether SSL is
required). Multiple web-resource-collection entries are permitted within
security-constraint.

Listing All Possible Abstract Roles
You have to declare all possible abstract roles in the same manner with BASIC
authentication as you do with form-based authentication. See Section 3.1
(Form-Based Authentication) for details. For a quick summary, you use one or more
security-role elements for this purpose. Each security-role element con-
tains an optional description element and a required role-name element.

Listing 3.22 web.xml (Excerpt designating BASIC authentication)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<security-constraint>...</security-constraint>
<login-config>

 <auth-method>BASIC</auth-method>
<realm-name>Some Name</realm-name>

 </login-config>
</web-app>

3.4 Example: BASIC Authentication 147

Specifying URLs That Should Be
Available Only with SSL

You designate SSL-only resources in the same manner with BASIC authentication as
you do with form-based authentication. See Section 3.1 (Form-Based Authentica-
tion) for details. To summarize, use the user-data-constraint subelement of
security-constraint with a transport-guarantee subelement specifying
INTEGRAL or CONFIDENTIAL.

In addition to simply requiring SSL, the servlet API provides a way for stipulating
that users must authenticate themselves with client certificates. You supply a value of
CLIENT-CERT for the auth-method subelement of login-config (see “Specify-
ing URLs That Should Be Password Protected” in Section 3.1). However, only appli-
cation servers that have full J2EE support are required to support this capability.

3.4 Example: BASIC Authentication

In Section 3.2 (Example: Form-Based Authentication), we showed the external Web
site for a fictional company named hot-dot-com.com. In this section, we show their
intranet. Because applications that use form-based authentication vary only slightly
from those that use BASIC authentication, we just concentrate on the differences
here. We start by showing the home page, then list the web.xml file, summarize the
various protection mechanisms, show the password file, and give the code for each of
the protected resources.

The Home Page
Listing 3.23 shows the top-level home page for the Web application. The application
is registered with a URL prefix of /hotdotcom-internal so the home page can be
accessed with the URL http://host/hotdotcom-internal/index.jsp as shown in Figure
3–14. If you’ve forgotten how to assign URL prefixes to Web applications, review
Section 1.3 (Registering Web Applications with the Server).

Now, the main home page has no security protections and consequently does not
absolutely require an entry in web.xml. However, many users expect URLs that list a
directory but no file to invoke the default file from that directory. So, we put a
welcome-file-list entry in web.xml (see Listing 3.24 in the next section) to
ensure that http://host/hotdotcom-internal/ invokes index.jsp.

Chapter 3 ■ Declarative Security148

Figure 3–14 Home page for the hot-dot-com.com intranet.

Listing 3.23 index.jsp (Top-level home page)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>hot-dot-com.com!</TITLE>
<LINK REL=STYLESHEET
 HREF="company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">hot-dot-com.com!</TABLE>
<P>
<H3>Welcome to the hot-dot-com intranet</H3>
Please select one of the following:

 Financial Plan.
 Available to all employees.
 Business Plan.
 Available only to corporate executives.
 Employee Compensation Plans.
 Available to all employees.

</BODY></HTML>

3.4 Example: BASIC Authentication 149

The Deployment Descriptor
Listing 3.24 shows the complete deployment descriptor used with the hotdot-
com-internal Web application.

The deployment descriptor specifies several things:

• URLs that give a directory but no file name result in the server first trying to
use index.jsp and next trying index.html. If neither file is available, the
result is server specific (e.g., a directory listing).

• URLs that use the default servlet mapping (i.e., http://host/hotdotcom/

servlet/ServletName) invoke the NoInvokerServlet and display a message
telling the user that the invoker servlet has been disabled.

• The financial-plan.html page can be accessed only by company employees
or executives.

• The business-plan.html page can be accessed only by company executives.

Listing 3.24
WEB-INF/web.xml (Complete version for
hot-dot-com.com intranet)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <error-page>
 <error-code>400</error-code>
 <location>/WEB-INF/jspPages/failed-login.jsp</location>
 </error-page>

 <error-page>
 <error-code>403</error-code>
 <location>/WEB-INF/jspPages/forbidden.jsp</location>
 </error-page>

 <!-- Protect financial plan. Employees or executives. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Financial Plan</web-resource-name>
 <url-pattern>/financial-plan.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>employee</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

Chapter 3 ■ Declarative Security150

 <!-- Protect business plan. Executives only. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Business Plan</web-resource-name>
 <url-pattern>/business-plan.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>
 <!-- Protect compensation plan. Employees or executives. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Compensation Plan</web-resource-name>
 <url-pattern>/employee-pay.jsp</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>employee</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Tell the server to use BASIC authentication. -->
<login-config>

 <auth-method>BASIC</auth-method>
 <realm-name>Intranet</realm-name>
 </login-config>

 <security-role>
 <role-name>employee</role-name>
 </security-role>
 <security-role>
 <role-name>executive</role-name>
 </security-role>

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

Listing 3.24
WEB-INF/web.xml (Complete version for
hot-dot-com.com intranet) (continued)

3.4 Example: BASIC Authentication 151

The Password File
Tomcat password files are not specific to Web applications; they are general to the
server. Listing 3.25 shows the password file used by Tomcat for this Web application.
It defines three new users: gates and ellison in the employee role and
mcnealy in the executive role.

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 3.25 install_dir/conf/tomcat-users.xml (Three new users)

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="registered-user" />
 <role rolename="administrator" />
 <role rolename="employee" />
 <role rolename="executive" />

 <user username="juan" password="nauj"
roles="administrator" />

 <user username="john" password="nhoj"
roles="registered-user" />

 <user username="juana" password="anauj"
roles="administrator,registered-user" />

 <user username="jane" password="enaj"
roles="registered-user" />

<user username="gates" password="llib"
 roles="employee" />
 <user username="ellison" password="yrral"
 roles="employee" />
 <user username="mcnealy" password="ttocs"
 roles="executive" />
</tomcat-users>

Listing 3.24
WEB-INF/web.xml (Complete version for
hot-dot-com.com intranet) (continued)

Chapter 3 ■ Declarative Security152

The Financial Plan
Listing 3.26 shows the first of the protected pages at the hotdotcom-internal
site. Figure 3–15 shows the dialog box presented by Microsoft Internet Explorer to
unauthenticated users who attempt to access the page. If authentication fails, the
same dialog box will be redisplayed to the user up to three times. If the third try is
likewise unsuccessful, the login-failure page will be displayed. We also place the
error-page element into the web.xml file to direct the server to display our cus-
tom 401 page (e.g., failed-login.jsp) instead of the Tomcat’s generated one like so:

<error-page>
 <error-code>401</error-code>
 <location>/WEB-INF/jspPages/failed-login.jsp</location>
</error-page>

For more detail on setting up error pages see Section 2.9 (Designating Pages to
Handle Errors). Figure 3–16 shows an unsuccessful login (after three tries) and Fig-
ure 3–17 shows a successful login attempt.

Listing 3.26 financial-plan.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Financial Plan</TITLE>
<LINK REL=STYLESHEET
 HREF="company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Financial Plan</TABLE>
<P>
<H3>Steps:</H3>

 Make lots of money.
 Increase value of stock options.
 Make more money.
 Increase stock option value further.

</BODY></HTML>

3.4 Example: BASIC Authentication 153

Figure 3–15 Unauthenticated users who attempt to access protected resources are
presented with a dialog box. If the authentication fails, the same dialog box will be
redisplayed to the user up to three times.

Figure 3–16 If the user tries to log in three times in a row and fails, the unsuccessful login
page will be displayed.

Chapter 3 ■ Declarative Security154

Figure 3–17 A successful login attempt.

The Business Plan
The financial plan of the previous section is available to all employees and execu-
tives. The business plan (Listing 3.27), in contrast, is available only to executives.
Thus, it is possible for an authenticated user to be denied access to it. Figure 3–18
shows this result. You have access to more than one username/password combina-
tion. You were authenticated as a user with restricted privileges. You now want to
log in as a user with additional privileges. How do you do so? Unfortunately, the
answer is to quit the browser and restart. That’s one of the downsides of BASIC
authentication.

Figure 3–19 shows the result after the browser is restarted and the client logs in as
a user in the executive role (mcnealy in this case).

Listing 3.27 business-plan.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Business Plan</TITLE>
<LINK REL=STYLESHEET
 HREF="company-styles.css"
 TYPE="text/css">
</HEAD>

3.4 Example: BASIC Authentication 155

Figure 3–18 Attempt to access the business plan by an authenticated user who is not in
the executive role. This result is different from that of failed authentication, which is
shown in Figure 3–16.

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Business Plan</TABLE>
<P>
<H3>Steps:</H3>

 Inflate name recognition by buying meaningless ads
 on high-profile TV shows.
 Decrease employee pay by promising stock options instead.
 Increase executive pay with lots of perks and bonuses.
 Get bought out before anyone notices we have no
 business plan.

</BODY>
</HTML>

Listing 3.27 business-plan.html (continued)

Chapter 3 ■ Declarative Security156

Figure 3–19 Attempt to access the business plan by an authenticated user who is in the
executive role.

The NoInvoker Servlet
As it currently stands, the hotdotcom-internal application has no protected
servlets, so it is not absolutely necessary to disable the invoker servlet for the requests
that are sent to http://host/hotdotcom-internal/servlet/something. However, it is a
good idea to plan ahead and disable the invoker servlet as a matter of course in all
Web applications that have restricted resources.

This application uses the same NoInvokerServlet (Listing 3.19) and
url-pattern entry in web.xml (Listing 3.24) as does the external hotdotcom
application.

3.5 Configuring Tomcat to Use SSL

Servlet and JSP containers are not required to support SSL, even in fully J2EE-com-
pliant application servers or with version 2.4 of the servlet specification. There are
servlet containers that don’t support SSL and function as a plug-in to the Web server.
Even if the communication between the client and the Web server is encrypted, the
communication between the Web server and the servlet container might not be.
Thus, if you declare that some URLs in your application must use SSL, you would

3.5 Configuring Tomcat to Use SSL 157

not be able to deploy your application on such a server. Therefore, Web applications
that rely on SSL are not necessarily portable.

Nevertheless, SSL is extremely useful, and many applications make use of it. For
example, many application servers are self-contained; they do not have a servlet/JSP
plug-in that is separate from the main Web server. In addition, some server plug-ins
use SSL even for the communication between the Web server and the plug-in. The
BEA WebLogic plug-in and IBM WebSphere support this very useful capability, for
example.

In Tomcat, the support for SSL is present, but disabled by default. This section
summarizes the steps necessary to enable the SSL support in Tomcat. For more
details, see http://jakarta.apache.org/tomcat/tomcat-5.0-doc/ssl-howto.html.

1. Create a self-signed public key certificate. SSL-based servers use
X.509 certificates to validate to clients that they (i.e., the servers) are
who they claim to be. This prevents attackers from hacking Domain
Name System (DNS) servers to redirect SSL requests to their site.
For real-world use, the certificate needs to be signed by a trusted
authority like VeriSign or Thawte. For testing purposes, however, a
self-signed certificate is sufficient. To generate one that will be valid
for two years (730 days), execute the following:

keytool -genkey -alias tomcat -keyalg RSA -validity 730

The system will prompt you for a variety of information starting with
your first and last name. For a server certificate, this should be the
server’s name, not your name! For example, with a server that will
be accessed from multiple machines, respond with the hostname
(www.yourcompany.com) or the Internet Protocol (IP) address
(207.46.230.220) when asked “What is your first and last name?” For
a development server that will run on your desktop, use localhost.
Remember that, for deployment purposes, self-signed certificates are
not sufficient. You would need to get your certificate signed by a
trusted Certificate Authority. You can use certificates from keytool
for this purpose also; it just requires a lot more work. For testing pur-
poses, however, self-signed certificates are just as good as trusted
ones.

Core Approach

Supply the server’s hostname or IP address when asked for your first and
last name. Use localhost for a desktop development server.

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/ssl-howto.html

Chapter 3 ■ Declarative Security158

The system will also prompt you for your organization, your location,
a keystore password, and a key password. Be sure to use the same
value for both passwords. The system will then create a file called
.keystore in your home directory (e.g., /home/username on UNIX or
C:\Documents and Settings\username on Windows XP). You can also
use the -keystore argument to change where this file is created.

For more details on keytool (including information on creating
trusted certificates that are signed by a standard Certificate Author-
ity), see http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/key-

tool.html.
2. Copy the keystore file to the Tomcat installation directory.

Copy the .keystore file just created from your home directory to
tomcat_dir.

3. Uncomment and edit the SSL connector entry in tomcat_dir/
conf/server.xml. Look for a commented-out Connector element
that has the port attribute set to 8443. Remove the enclosing com-
ment tags (<!--...-->). Change the port from 8443 to the default
SSL value of 443. Add a keystoreFile attribute designating the
location and name of the keystore file relative to the tomcat_dir

installation directory. Add a keystorePass attribute designating
the password (used when you created the .keystore file). Here is an
example:

<Connector port="443" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25"
maxSpareThreads="75" enableLookups="false"
disableUploadTimeout="true" acceptCount="100"
scheme="https" secure="true" clientAuth="false"
sslProtocol="TLS" keystoreFile=".keystore"
keystorePass="mypassword"/>

4. Change the main connector entry in tomcat_dir/conf/
server.xml to use port 443 for SSL redirects. Use the
redirectPort attribute to specify this. Here is an example:

<Connector port="80" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25"
maxSpareThreads="75" enableLookups="false"
redirectPort="443" acceptCount="100"
connectionTimeout="20000"
disableUploadTimeout="true"/>

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

3.5 Configuring Tomcat to Use SSL 159

5. Restart the server.
6. Access https://localhost/. (Note that this URL starts with https,

not http.) With Firefox, you should see an initial warning like that
of Figure 3–20. If you click the Examine Certificate button, you
should see a dialog box like the one shown in Figure 3–21. You can
suppress the warnings on Firefox by choosing the “Accept this cer-
tificate permanently” option in the original warning dialog box.
Once you have accepted the certificate, you should see the Tomcat
home page (Figure 3–22). With Internet Explorer, you will see an
initial warning like that shown in Figure 3–23. To view the certifi-
cate information, click the View Certificate button. You should see
something close to Figure 3–24. For future requests, you can sup-
press the warnings by clicking the Install Certificate button and
importing the certificate (Figures 3–25 through 3–29). The next
time you access http://localhost/, you should see the Tomcat home
page without any warnings as in Figure 3–30.

Figure 3–20 Certificate warning dialog box supplied by Firefox. You can view the
certificate information by clicking Examine Certificate.

Chapter 3 ■ Declarative Security160

Figure 3–21 Certificate information presented on Firefox.

Figure 3–22 After the certificate has been accepted, accessing Tomcat’s home page with
HTTPS does not produce any warnings (Firefox shown).

3.5 Configuring Tomcat to Use SSL 161

Figure 3–23 Certificate warning dialog box supplied by Internet Explorer. You can view
the certificate information by clicking View Certificate.

Figure 3–24 Certificate information presented by Internet Explorer. View different types of
certificate information by clicking the General, Details, and Certification Path tabs at the
top of this dialog box. To suppress future warnings, you can import the certificate by
clicking the Install Certificate button and starting the Certificate Import Wizard shown in
Figure 3–25.

Chapter 3 ■ Declarative Security162

Figure 3–25 First screen of the Certificate Import Wizard in Internet Explorer.

Figure 3–26 Second screen of the Certificate Import Wizard in Internet Explorer. You can
let Internet Explorer place the certificate in its default certificate store or choose your own.

3.5 Configuring Tomcat to Use SSL 163

Figure 3–27 Third screen of the Certificate Import Wizard in Internet Explorer.

Figure 3–28 Warning dialog box in Internet Explorer making sure you understand that
once the certificate is imported, Windows will no longer pop up a warning dialog box,
automatically trusting this certificate.

Figure 3–29 Internet Explorer Certificate Import Wizard success dialog box.

Chapter 3 ■ Declarative Security164

Figure 3–30 After the certificate has been accepted, accessing Tomcat’s home page with
HTTPS does not produce any warnings (Internet Explorer shown).

3.6 WebClient: Talking to Web
Servers Interactively

Sometimes, debugging Web-based applications is fairly difficult. Is the problem with
the code, the browser, or the networking? To help debug Web applications, we wrote
WebClient, a standalone Swing application to interactively connect to Web servers,
send requests, and receive replies. Essentially, WebClient is a simple browser from
which you can send custom HTTP requests to the server and see both the response
headers and returned document.

The code for WebClient is available at http://www.coreservlets.com/ and is
bundled as an executable JAR file. To run this program as a JAR file, enter the fol-
lowing line at the command prompt:

PROMPT> java -jar webclient.jar

WebClient supports the following options:

• GET or POST. You can select either a GET or POST request. For a
GET request, you need to append any query data to the URL after a
question mark, ?. For a POST request, you would enter the query data
in the Query Data text area. Remember that for a POST request you
need to add a Content-Length header to the request.

http://www.coreservlets.com/

3.6 WebClient: Talking to Web Servers Interactively 165

• HTTP/1.0 or HTTP/1.1. You can select either the HTTP/1.0 or
HTTP/1.1 protocol version for the request. Remember that for
HTTP/1.1 a HOST header is also required (e.g., Host: hostname,
where hostname is the host server from which to request the page).

• Request headers. You can specify one or more request headers.
If you are uncertain which headers your browser normally sends to
a server, you can use the EchoServer program to see them.
EchoServer simply sends back the complete HTTP request,
wrapped in an HTML document. You can find EchoServer in
Chapter 19 of Volume 1 or online at http://www.coreservlets.com/.

• Query data. You can send POST data to the server. When sending
name/value pairs, you must encode the value in the application/
x-www-form-urlencoded format. See http://www.w3.org/TR/
html40/appendix/notes.html#non-ascii-chars for encoding details. If
you are unfamiliar with this encoding, WebClient provides a button,
Encode Data, to encode the data for you. Note that WebClient
assumes a UTF-8 character set.

• Secure Sockets Layer (SSL). You can send a request either as
HTTP or HTTPS (SSL 3.0). For a secure connection, WebClient
obtains a socket from an SSLSocketFactory by using a code similar
to the following:

SocketFactory factory = SSLSocketFactory.getDefault();
Socket secureClient = factory.createSocket(host, port);

 Before establishing an SSL connection, Java uses the default
keystore at JRE_HOME/lib/security/cacerts to determine whether to
trust the signed server certificate. This file contains a number of
standard Certificate Authorities (CAs).

 If you digitally sign your own certificates (see Section 3.7) and need to
use a different keystore that knows about your CA, specify the location
and type of the keystore through the javax.net.ssl.trustStore
and javax.net.ssl.trustStoreType system properties,
respectively. For example, if the name of the keystore is .keystore and
the keystore type is JKS, start WebClient with the following command:

PROMPT> java -Djavax.net.ssl.trustStore=.keystore
 -Djavax.net.ssl.trustStoreType=JKS
 -jar webclient.jar

Common keystore types are JKS, JCEKS, and PKCS12.
• Proxy servers. If your network environment uses a proxy server, you

can specify both a proxy host and proxy port to use with WebClient.
When a request is sent to a proxy server, the complete URL is sent,

instead of just the URI. For example, if you request the page

http://www.coreservlets.com/
http://www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars
http://www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars

Chapter 3 ■ Declarative Security166

http://java.sun.com/reference/api/, WebClient sends the following
request to the proxy server:

GET http://java.sun.com/reference/api/ HTTP/1.0

In this example, the proxy server, in turn, then sends the standard
request to java.sun.com:

GET /reference/api/ HTTP/1.0

Be aware that some proxy servers may use special proxy headers, for
instance, Proxy-Connection and Proxy-Authorization.
Contact the administrator of the proxy server if you have questions.

A representative conversation of WebClient with www.google.com is shown in
Figure 3–31. Here, the URL is http://www.google.com/search, and the query data
for the GET request is q=Olympics+Torino—a Google search for documents on
the 2006 Winter Olympics in Torino, Italy.

Figure 3–31 Conversation with www.google.com, where the user can completely
customize the request. The captured server response shows both the response headers and
document.

www.google.com
http://www.google.com/search
www.google.com
http://java.sun.com/reference/api/

3.7 Signing a Server Certificate 167

3.7 Signing a Server Certificate

In Section 3.5 (Configuring Tomcat to Use SSL) we show you how to configure a
self-signed public key certificate for a server. Self-signed certificates are suitable for
development and testing; however, to simulate a production environment, you may
want a trusted certificate signed by a CA.

You can submit a certificate signing request to many recognized commercial CAs
(for instance, http://www.thawte.com/ and http://www.entrust.com/). However,
purchasing a signed digital certificate from a commercial company is relatively
expensive, so many corporations choose to set themselves up as their own CA.

In this section, we illustrate signing a server certificate as a CA. Much of the detail
for setting up a CA is beyond the scope of this book, so instead, we use the Java Secu-
rity Tool Kit (JSTK), written by Pankaj Kumar. The JSTK is available for educational
purposes under the Open Source License v2.0 at http://www.j2ee-security.net/.

Next, we cover the steps to sign your own CA and server certificates. The steps we
present are for the Java Developer’s Kit (JDK) 1.4.2_09 on a Windows platform. If
you are using an earlier JDK or a different operating system, please check the JSTK
documentation for specific information.

1. Download and install the JSTK. The JSTK is available at
http://www.j2ee-security.net/book/dnldsrc/ as a ZIP file,
jstk-1_0_1.zip. Unzip the JSTK into the default directory,
C:\jstk-1.0.1, and from a DOS window set both the JAVA_HOME
and the JSTK_HOME environment variables as shown:

C:\jstk-1.0.1> set JAVA_HOME=C:\j2sdk1.4.2_09
C:\jstk-1.0.1> set JSTK_HOME=C:\jstk-1.0.1

The JAVA_HOME variable refers to the install directory of the JDK,
and the JSTK_HOME variable refers to the install directory of the
JSTK.

 The JSTK contains numerous scripts, of which we use only the
certtool script to set up a CA and sign certificates. For more infor-
mation on the other tools available in the JSTK, we recommend read-
ing the security book, J2EE Security for Servlets, EJBs, and Web
Services, by Pankaj Kumar.

2. Set up the CA. Use the JSTK certtool script to establish a public
key infrastructure (PKI) for your CA. Enter the following command to
set up a keystore for your CA:

C:\jstk-1.0.1> bin\certtool.bat setupca -dn "CN=MyCompany
Root CA, OU=J2EE Division, O=MyCompany Inc., C=US"
-storetype jks -password certauth

http://www.thawte.com/
http://www.entrust.com/
http://www.j2ee-security.net/
http://www.j2ee-security.net/book/dnldsrc/

Chapter 3 ■ Declarative Security168

CA setup successful: cadir

This command creates a CA keystore, ca.ks, in the subdirectory cadir.
The keystore type is jks (Java KeyStore) and the CA keystore pass-
word is certauth.

For a complete description of the options when setting up a Root
CA, enter

C:\jstk-1.0.1> bin\certtool.bat setupca -h

3. Create a self-signed public key certificate. Issue the Java
keytool command shown here to generate a public–private key pair
and self-signed server certificate. Following, we show an example
input to the questions generated by the keytool command.

C:\jstk-1.0.1> keytool -alias tomcat -genkey -keyalg RSA
 -validity 730 -keystore .keystore
 -storepass srvrpass
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]: Consulting
What is the name of your organization?
 [Unknown]: LMBrown.com, Inc.
What is the name of your City or Locality?
 [Unknown]: Manassas
What is the name of your State or Province?
 [Unknown]: VA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=localhost, OU=Consulting, O="LMBrown.com, Inc.",
L=Manassas, ST=VA, C=US correct?
 [no]: yes

Enter key password for <tomcat>
 (RETURN if same as keystore password): srvrpass

The command creates a public–private key pair, with the public key
wrapped in an X.509 v3 self-signed certificate and stored as a single
certificate chain. Both the certificate chain and private key are stored
in the keystore identified by the alias tomcat. The name of the key-
store is .keystore (located in the working directory) with a password of
srvrpass. The certificate is considered valid for 730 days (two
years).

4. Generate a certificate signing request (CSR). Use the keytool
to generate a CSR in the PKCS#10 format, suitable for signing by your
CA. The following command creates a CSR for the self-signed certifi-
cate identified by the alias tomcat in .keystore:

3.7 Signing a Server Certificate 169

C:\jstk-1.0.1> keytool -certreq -alias tomcat
 -keystore .keystore -storepass srvrpass
 -file server.csr

The generated CSR is stored in the file server.csr.
5. Sign the server certificate by the JSTK Test CA. Use the follow-

ing JSTK certtool command to sign the CSR by the JSTK Test CA:

C:\jstk-1.0.1> bin\certtool.bat issue -csrfile server.csr
 -cerfile server.cer -password certauth

Issued Certificate written to file: server.cer

 The command accepts the CSR, server.csr, signs the request by the
CA, and places the signed certificate in the file server.cer. The pass-
word is the CA keystore password, certauth.

6. Import the trusted certificate into the server keystore. The last
step is to enter the following keytool command to import the
CA-signed server certificate back into the server keystore:

C:\jstk-1.0.1> keytool -import -alias tomcat
 -keystore .keystore -storepass srvrpass
 -file server.cer
Top-level certificate in reply:

Owner: CN=MyCompany Root CA, OU=J2EE Division,
O=MyCompany Inc., C=US

Issuer: CN=MyCompany Root CA, OU=J2EE Division,
O=MyCompany Inc., C=US

Serial number: 64
Valid from: Sun Nov 13 08:26:00 GMT-05:00 2005

 until: Sat Aug 09 08:26:00 GMT-05:00 2008
Certificate fingerprints:
 MD5: B9:68:45:17:86:38:62:BC:36:E3:89:E7:25:5B:49:56
 SHA1: 85:54:FE:B3:CA:43:BF:00:D6:62:BC:B7:36:62:

0A:39:F6:9F:4A:F5

... is not trusted. Install reply anyway? [no]: yes
Certificate reply was installed in keystore

Once you’ve completed this last step, you should have a certificate, signed by
MyCompany Root CA, for your server located in .keystore. If you’d like to test this
certificate with Apache Tomcat, see Section 3.5 (Configuring Tomcat to Use SSL) for
configuring the server for a certificate. Just be certain to specify srvrpass for the
password of the server keystore.

Chapter 3 ■ Declarative Security170

Exporting the CA Certificate
To install your CA certificate into your browser as a Trusted Root Certificate, you can
export the certificate with the following command:

C:\jstk-1.0.1> keytool -export -alias cakey -file ca.cer
 -keystore cadir\ca.ks
 -storetype jks -storepass certauth
Certificate stored in file <ca.cer>

The command exports the CA certificate to the file ca.cer.
To import the CA certificate as a Trusted Root Certificate in Internet Explorer,

select Tools, Internet Options, then click the Content tab (Figure 3–32).

Click the Certificates button to open the Certificates dialog box and click the
Trusted Root Certification Authorities tab (Figure 3–33).

Figure 3–32 Content tab for Internet Options in Internet Explorer 6.0.

3.7 Signing a Server Certificate 171

Click Import to open the Certificate Import Wizard (Figure 3–34) and then click
Next to display the window for selecting the CA certificate (Figure 3–35). Browse to
the ca.cer file located in the C:\jstk-1.0.1 directory and click Next.

Figure 3–33 Trusted Root Certification Authorities tab in the Certificates dialog box.

Figure 3–34 Initial Certificate Import Wizard to import a new CA certificate.

Chapter 3 ■ Declarative Security172

When presented with the option to choose the certificate store (Figure 3–36),
accept the default option of “Place all certificates in the following store,” and then
click Next.

Figure 3–35 Selection of the ca.cer file issues by JSTK Test Root CA.

Figure 3–36 Available options for choosing the certificate store for the new CA
certificate.

3.7 Signing a Server Certificate 173

At this point, you should see a summary of the settings to complete the import
(Figure 3–37). Click Finish.

When prompted to add the certificate to the Root Store (Figure 3–38), click Yes.
The MyCompany Root CA should now be listed as one of the Trusted Root Certifica-
tion Authorities (Figure 3–39). Click Close.

Figure 3–37 Summary of configuration settings before completion of the certificate
import.

Figure 3–38 Dialog box to choose whether to add the certificate to the Root Store.
Click Yes.

Chapter 3 ■ Declarative Security174

If you configured Apache Tomcat on your localhost to use the .keystore created
earlier (see Section 3.5), then you can successfully load https://localhost/ into the
browser without a warning message (see Figure 3–40).

Figure 3–39 Certificates dialog box showing the MyCompany Root CA added to the
Trusted Root Certification Authorities list.

Figure 3–40 Using SSL with Apache Tomcat. The server is configured with the .keystore
containing the server certificate signed by the CA and the browser is configured to trust the
signing CA.

3.7 Signing a Server Certificate 175

Using WebClient with Tomcat and SSL
In Section 3.6 (WebClient: Talking to Web Servers Interactively), we presented
WebClient, a simple browser to help you debug your Web applications over SSL
connections and through proxy servers. WebClient permits you to examine both the
server response headers and the returned document.

If you configure Tomcat for SSL and use the default keystore for the Java Run-
time Environment (JRE), WebClient will throw an SSLHandshakeException
“No trusted certificate found.” exception when you request a secure Web page, for
example, https://localhost/.

This exception occurs because the JRE, by default, uses the keystore located at
JRE_HOME/jre/lib/security/cacerts to determine whether to trust the server certifi-
cate and establish the SSL connection. The keystore, cacerts, contains many com-
mon root CA certificates (see http://java.sun.com/j2se/1.4.2/docs/tooldocs/

windows/keytool.html#Certificates); however, if you established your own CA, the
JRE has no knowledge of the CA that signed your server certificate.

To specify a different keystore containing information about your CA when start-
ing WebClient , prov ide a sy stem prope rt y for the ke ys tore loca t ion
javax.net.ssl.trustStore and a system property for the keystore type
javax.net.ssl.trustStoreType.

The following command starts WebClient with the keystore of the CA created
earlier:

Prompt> java -jar
 -Djavax.net.ssl.trustStore=C:\jstk-1.0.1\cadir\ca.ks
 -Djavax.net.ssl.trustStoreType=jks
 webclient.jar

Figure 3–41 shows a typical SSL communication with Tomcat through WebClient.
The page requested is https://localhost/.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html#Certificates
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html#Certificates

Chapter 3 ■ Declarative Security176

Figure 3–41 Test of SSL connection to Apache Tomcat, https://localhost/. When
starting WebClient, command-line system properties specify information about the Root
CA (for the returned SSL server certificate).

This page intentionally left blank

PROGRAMMATIC
SECURITY

Topics in This Chapter

• Combining container-managed and programmatic
security

• Using the isUserInRole method

• Using the getRemoteUser method

• Using the getUserPrincipal method

• Programmatically controlling all aspects of security

• Using SSL with programmatic security

179

ChapterChapter 4

Chapter 3 (Declarative Security) introduced two fundamental aspects of Web
application security:

1. Preventing unauthorized users from accessing sensitive data.
This process involves access restriction (identifying which resources
need protection and who should have access to them) and authentica-
tion (identifying users to determine if they are one of the authorized
ones). Simple authentication involves the user entering a username
and password in an HTML form or a dialog box; stronger authentica-
tion involves the use of X.509 certificates sent by the client to the
server. The first aspect of Web security applies to virtually all secure
applications. Even intranets at locations with physical access controls
usually require some sort of user authentication.

2. Preventing attackers from stealing network data while it is in
transit. This process involves the use of SSL to encrypt the traffic
between the browser and the server. This capability is generally
reserved for particularly sensitive applications or for particularly sensi-
tive pages within a larger application. After all, unless the attackers are
on your local subnet, it is exceedingly difficult for them to gain access
to your network traffic.

There are two general strategies for implementing these security aspects: declara-
tive security and programmatic security.

Chapter 4 ■ Programmatic Security180

With declarative security, the topic of the previous chapter, none of the individ-
ual servlets or JSP pages need any security-aware code. Instead, both of the major
security aspects are handled by the server. To prevent unauthorized access, you use
the Web application deployment descriptor (web.xml) to declare that certain URLs
need protection, and which categories of users should have access to them. You also
designate the authentication method that the server should use to identify users. At
request time, the server automatically prompts users for usernames and passwords
when they try to access restricted resources, automatically checks the results against
a predefined set of usernames and passwords, and automatically keeps track of
which users have previously been authenticated. This process is completely trans-
parent to the servlets and JSP pages. To safeguard network data, you use the deploy-
ment descriptor to stipulate that certain URLs should only be accessible with SSL.
If users try to use a regular HTTP connection to access one of these URLs, the
server automatically redirects them to the HTTPS (SSL) equivalent.

Declarative security is all well and good. In fact, it is by far the most common
approach to Web application security. But what if you want your servlets to be com-
pletely independent of any server-specific settings such as password files? Or, what if
you want to let users in various roles access a particular resource but customize the
data depending on the role that they are in? Or, what if you want to authenticate
users other than by requiring an exact match from a fixed set of usernames and pass-
words? That’s where programmatic security comes in.

With programmatic security, the topic of this chapter, protected servlets and JSP
pages at least partially manage their own security. To prevent unauthorized access,
each servlet or JSP page must either authenticate the user or verify that the user has
been authenticated previously. Even after the servlet or JSP page grants access to a
user, it can still customize the results for different individual users or categories of
users. To safeguard network data, each servlet or JSP page has to check the network
protocol used to access it. If users try to use a regular HTTP connection to access one
of these URLs, the servlet or JSP page must manually redirect them to the HTTPS
(SSL) equivalent.

4.1 Combining Container-Managed
and Programmatic Security

Declarative security is very convenient: you set up usernames, passwords, access
mechanisms (HTML forms vs. BASIC authentication) and transport-layer require-
ments (SSL vs. normal HTTP), all without putting any security-related code in any of
the individual servlets or JSP pages. However, declarative security provides only two
levels of access for each resource: allowed and denied. Declarative security provides
no options to permit resources to customize their output depending on the username
or role of the client that accesses them.

4.1 Combining Container-Managed and Programmatic Security 181

It would be nice to provide this customization without giving up the convenience
of container-managed security for the usernames, passwords, and roles as would be
required if a servlet or JSP page completely managed its own security (as in Section
4.3). To support this type of hybrid security, the servlet specification provides three
methods in HttpServletRequest:

• isUserInRole. This method determines if the currently authen-
ticated user belongs to a specified role. For example, given the
usernames, passwords, and roles of Listing 4.1, if the client has
successfully logged in as user valjean, the following two expressions
would return true:

request.isUserInRole("lowStatus")
request.isUserInRole("nobleSpirited")

Tests for all other roles would return false. If no user is currently
authenticated (e.g., if authorization failed or if isUserInRole is
called from an unrestricted page and the user has not yet accessed a
restricted page), isUserInRole returns false. In addition to the
standard security roles given in the password file, you can use the
security-role-ref element to define aliases for the standard
roles. See the next subsection for details.

• getRemoteUser. This method returns the name of the current user.
For example, if the client has successfully logged in as user valjean,
request.getRemoteUser() would return "valjean". If no
user is currently authenticated (e.g., if authorization failed or if
isUserInRole is called from an unrestricted page and the user has
not yet accessed a restricted page), getRemoteUser returns null.

• getUserPrincipal. This method returns the current username
wrapped inside a java.security.Principal object. The
Principal object contains little information beyond the username
(available with the getName method). So, the main reason for using
getUserPrincipal in lieu of getRemoteUser is to be compatible
with preexisting security code (the Principal class is not specific to
the servlet and JSP API and has been part of the Java platform since
version 1.1). If no user is currently authenticated, getUserPrincipal
returns null.

It is important to note that this type of programmatic security does not negate the
benefits of container-managed security. With this approach, you can still set up user-
names, passwords, and roles by using your server’s mechanisms. You still use the
login-config element to tell the server whether you are using form-based or
BASIC authentication. If you choose form-based authentication, you still use an
HTML form with an ACTION of j_security_check, a text field named

Chapter 4 ■ Programmatic Security182

j_username, and a password field named j_password. Unauthenticated users are
still automatically sent to the page containing this form, and the server still automati-
cally keeps track of which users have been authenticated. You stil l use the
security-constraint element to designate the URLs to which the access
restrictions apply. You still use the user-data-constraint element to specify
that certain URLs require SSL. For details on all of these topics, see Section 3.1
(Form-Based Authentication). However, you also add code to some of your resources
to customize their behavior based on who is accessing them.

Security Role References
The security-role-ref subelement of servlet lets you define servlet-specific
synonyms for existing role names. This element should contain three possible
subelements: description (optional descriptive text), role-name (the new syn-
onym), and role-link (the existing security role).

For instance, suppose that you are creating an online bookstore and your server’s
user information store (e.g., Tomcat lets you use a password file as we describe in
Section 3.1) stipulates that user rowling is in role author. However, you want to
reuse a servlet of type BookInfo (in the catalog package) that was created else-
where. The problem is that this servlet calls the role writer, not author. Rather
than modifying the user information store, you can use security-role-ref to
provide writer as an alias for author.

Suppose further that you have a servlet of class EmployeeData (in the hr package)
that provides one type of information to a goodguy and another type to a meanie.
You want to use this servlet with the password file (i.e., Tomcat’s specific user informa-
tion store) defined in Listing 3.1 that assigns users to the nobleSpirited and mean-
Spirited roles. To accomplish this task, you can use security-role-ref to say
that isUserInRole("goodguy") should return true for the same users that
isUserInRole("nobleSpirited") already would. Similarly, you can use
security-role-ref to say that isUserInRole("meanie") should return true
for the same users that isUserInRole("meanSpirited") would.

Listing 4.1 shows a deployment descriptor that accomplishes both of these tasks.

Listing 4.1 web.xml (Excerpt illustrating security role aliases)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

4.2 Example: Combining Container-Managed and Programmatic Security 183

4.2 Example: Combining
Container-Managed and
Programmatic Security

List ing 4.2 presents a JSP page that augments the internal Web site for
hot-dot-com.com that was introduced in Section 3.4 (Example: BASIC Authentica-
tion). The page shows plans for employee pay. Because of entries in web.xml (Listing
4.3), the page can be accessed only by users in the employee or executive roles.
Although both groups can access the page, they see substantially different results. In
particular, the planned pay scales for executives are hidden from the normal employees.

Figure 4–1 shows the page when it is accessed by user gates or ellison (both
in the employee role; see Listing 3.25). Figure 4–2 shows the page when it is
accessed by user mcnealy (in the executive role). Remember that BASIC secu-
rity provides no simple mechanism for changing your username once you are vali-
dated (see Section 3.3). So, for example, switching from user gates to user
mcnealy requires you to quit and restart your browser.

<servlet>
<servlet-name>BookInformation</servlet-name>
<servlet-class>catalog.BookInfo</servlet-class>
<security-role-ref>

<role-name>writer</role-name> <!-- New alias. -->
<role-link>author</role-link> <!-- Preexisting role. -->

</security-role-ref>
</servlet>
<servlet>

<servlet-name>EmployeeInformation</servlet-name>
<servlet-class>hr.EmployeeData</servlet-class>
<security-role-ref>

<role-name>goodguy</role-name> <!-- New. -->
<role-link>nobleSpirited</role-link> <!-- Preexisting. -->

</security-role-ref>
<security-role-ref>

<role-name>meanie</role-name> <!-- New. -->
<role-link>meanSpirited</role-link> <!-- Preexisting. -->

</security-role-ref>
</servlet>

 <security-constraint>...</security-constraint>
<login-config>...</login-config>

</web-app>

Listing 4.1 web.xml (Excerpt illustrating security role aliases) (continued)

Chapter 4 ■ Programmatic Security184

Listing 4.2 employee-pay.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Compensation Plans</TITLE>
<LINK REL=STYLESHEET
 HREF="company-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Compensation Plans</TABLE>
<P>
Due to temporary financial difficulties, we are scaling
back our very generous plans for salary increases. Don't
worry, though: your valuable stock options more than
compensate for any small drops in direct salary.
<H3>Regular Employees</H3>
Pay for median-level employee (Master's degree, eight year's
experience):

 2004: $50,000.
 2005: $30,000.
 2006: $25,000.
 2007: $20,000.

<% if (request.isUserInRole("executive")) { %>
<H3>Executives</H3>
Median pay for corporate executives:

 2004: $500,000.
 2005: $600,000.
 2006: $700,000.
 2007: $800,000.

<% } %>
</BODY></HTML>

4.2 Example: Combining Container-Managed and Programmatic Security 185

Listing 4.3 web.xml (For augmented hotdotcom intranet)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Protect compensation plan. Employees or executives. -->
<security-constraint>

 <web-resource-collection>
 <web-resource-name>Compensation Plan</web-resource-name>
 <url-pattern>/employee-pay.jsp</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>employee</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Protect financial plan. Employees or executives. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Financial Plan</web-resource-name>
 <url-pattern>/financial-plan.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>employee</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

<!-- Protect business plan. Executives only. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Business Plan</web-resource-name>
 <url-pattern>/business-plan.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>

Chapter 4 ■ Programmatic Security186

<!-- Tell the server to use BASIC authentication. -->
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Intranet</realm-name>
 </login-config>

 <security-role>
 <role-name>employee</role-name>
 </security-role>
 <security-role>
 <role-name>executive</role-name>
 </security-role>

<!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 4.3 web.xml (For augmented hotdotcom intranet) (continued)

4.2 Example: Combining Container-Managed and Programmatic Security 187

Figure 4–1 The employee-pay.jsp page when accessed by a user who is in the
employee role.

Figure 4–2 The employee-pay.jsp page when accessed by a user who is in the
executive role.

Chapter 4 ■ Programmatic Security188

4.3 Handling All Security
Programmatically

Declarative security (see Chapter 3) offers a number of advantages to the developer.
Chief among them is the fact that individual servlets and JSP pages need no
security-conscious code: The container (server) handles authentication in a manner
that is completely transparent to the individual resources. For example, you can
change which categories of users should have access to a resource, you can switch
from form-based authentication to BASIC authentication, or from regular HTTP
connections to encrypted HTTPS connections, all without any changes to the indi-
vidual servlets or JSP pages. The developer can concentrate on the application logic
and which data to display without worrying about what type of user might end up
seeing the data.

Even when you want a bit more control than just “access allowed” or “access
denied,” it is convenient to let the server maintain and process the usernames and
passwords, as discussed in Section 4.1 (Combining Container-Managed and Pro-
grammatic Security).

However, the convenience of container-managed security comes at a price: It
requires a server-specific component. The method for setting up usernames, pass-
words, and user roles is not standardized and thus is not portable across different
servers. In most situations, this disadvantage is outweighed by the faster and simpler
servlet and JSP development process that results from leaving some or all of the
authorization tasks to the server. In some cases, however, you might want a servlet or
JSP page to be entirely self-contained with no dependencies on server-specific settings
or even web.xml entries. Although this approach requires a lot more work, it means
that the servlet or JSP page can be ported from server to server with much less effort
than with container-managed security. Even if you need to deploy the application on
the same server, it’s very convenient to be able to bundle up a WAR file (see Section
1.5), e-mail it to someone, and let them use it immediately. This is impossible with
declarative security because the WAR file is no longer self-contained. It needs the
deployer to set up server-specific configurations before it can be used. Furthermore,
the programmatic security only approach lets the servlet or JSP page use username and
password schemes other than an exact match to a preconfigured list.

It’s worth mentioning that you can create your own form-based authentication
mechanism. One possible implementation of this method would involve storing the
user ID (e.g., either username itself or the session ID) and the names of the catego-
ries of users this user belongs to in the HttpSession object. For example, you
might use a filter—see Chapter 5 (Servlet and JSP Filters)—to intercept every
request to any of your application’s resources and check for the presence of the user
information in the HttpSession. You can then use the information in the
HttpSession to decide if this user is allowed to have access to the requested

4.3 Handling All Security Programmatically 189

resource. If the user information is absent, you can forward the user’s request to the
login page. The action of the login page form would then evaluate username and
password for validity. If valid, the user’s information would be loaded into the
HttpSession object. The main advantage of this approach is that you still get to
present a custom login page with the look and feel of the rest of the application and
at the same time achieve complete portability. However, creating such a security
module would mean a lot of work. In this section, we’ll concentrate on the native
HTTP authentication.

HTTP supports two varieties of authentication: BASIC and DIGEST. Few brows-
ers support DIGEST, so we focus on BASIC here.

Here is a summary of the steps involved for BASIC authentication:

1. Check whether there is an Authorization request header.
 If there is no such header, go to Step 5.

2. Get the encoded username/password string. If there is an
Authorization header, it should have the following form:

Authorization: Basic encodedData

Skip over the word Basic and the following space—the remaining
part is the username and password represented in base64 encoding.

3. Reverse the base64 encoding of the username/password string.
Use the decodeBuffer method of the BASE64Decoder class. This
method call results in a string of the form username:password. The
BASE64Decoder class is bundled with the JDK; in JDK 1.3 or later it
can be found in the sun.misc package in jdk_dir/jre/lib/rt.jar.

4. Check the username and password. The most common approach
is to use a database or a file to obtain the real usernames and pass-
words. For simple cases, it is also possible to place the password infor-
mation directly in the servlet. In such a case, remember that access to
the servlet source code or class file provides access to the passwords.
If the incoming username and password match one of the reference
username/password pairs, return the page. If not, go to Step 5. With
this approach you can provide your own definition of “match.” With
container-managed security, you cannot.

5. When authentication fails, send the appropriate response to
the client. Return a 401 (Unauthorized) response code and a
header of the following form:

WWW-Authenticate: BASIC realm="some-name"

This response instructs the browser to pop up a dialog box telling the
user to enter a name and password for some-name, then to reconnect
with that username and password embedded in a single base64 string
inside the Authorization header.

Chapter 4 ■ Programmatic Security190

If you care about the details, base64 encoding is explained in RFC 1521. To
retrieve Requests for Comments (RFCs), start at http://www.rfc-editor.org/ to get a
current list of the RFC archive sites. However, there are probably only two things
you need to know about base64 encoding.

First, it is not intended to provide security, as the encoding can be easily reversed.
So, base64 encoding does not obviate the need for SSL (see Section 3.3) to thwart
attackers who might be able to snoop on your network connection (no easy task
unless they are on your local subnet). SSL is a variation of HTTP where the entire
stream is encrypted. It is supported by many commercial servers and is generally
invoked by use of https in the URL instead of http. Servlets can run on SSL servers
just as easily as on standard servers, and the encryption and decryption are handled
transparently before the servlets are invoked. See Chapter 3 (Declarative Security)
for examples.

The second point you should know about base64 encoding is that Sun provides
the sun.misc.BASE64Decoder class, distributed with JDK 1.1 and later, to
decode strings that were encoded with base64. In JDK 1.3 or later it can be found in
the sun.misc package in jdk_install_dir/jre/lib/rt.jar. Just be aware that classes in
the sun package hierarchy are not part of the official language specification and thus
are not guaranteed to appear in all implementations. So, if you use this decoder class,
make sure that you explicitly include the class file when you distribute your application.
One possible approach is to make the JAR file available to all Web applications on your
server and then to explicitly record the fact that your applications depend on it.

4.4 Example: Handling All Security
Programmatically

Listing 4.4 shows a servlet that generates hot stock recommendations. If it were
made freely available on the Web, it would put half the financial advisors out of busi-
ness. So, it needs to be password protected, available only to people who have paid
the very reasonable $2000 access fee.

Furthermore, the servlet needs to be as portable as possible because ISPs keep
shutting it down (they claim fraud, but no doubt they are really being pressured by
the financial services companies that the servlet outperforms). So, it uses complete
programmatic security and is entirely self-contained: Absolutely no changes or
server-specific customizations are required to move the servlet from system to
system.

Finally, requiring an exact match against a static list of usernames and passwords
(as is required in container-managed security) is too limiting for this application. So,
the servlet uses a custom algorithm (see the areEqualReversed method) for
determining if an incoming username and password are legal.

http://www.rfc-editor.org/

4.4 Example: Handling All Security Programmatically 191

Figure 4–3 shows what happens when the user first tries to access the servlet. Fig-
ure 4–4 shows the result of a failed authorization attempt. Figure 4–5 shows the
result of successful authorization. Listing 4.5 shows the complete web.xml file used
to deploy the servlet.

Listing 4.4 StockTip.java

package stocks;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.BASE64Decoder;

/** Servlet that gives very hot stock tips. So hot that
 * only authorized users (presumably ones who have paid
 * the steep financial advisory fee) can access the servlet.
 */

public class StockTip extends HttpServlet {

 /** Denies access to all users except those who know
 * the secret username/password combination.
 */

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String authorization = request.getHeader("Authorization");
 if (authorization == null) {
 askForPassword(response);
 } else {
 // Authorization headers looks like "Basic blahblah",
 // where blahblah is the base64 encoded username and
 // password. We want the part after "Basic ".
 String userInfo = authorization.substring(6).trim();
 BASE64Decoder decoder = new BASE64Decoder();
 String nameAndPassword =
 new String(decoder.decodeBuffer(userInfo));
 // Decoded part looks like "username:password".
 int index = nameAndPassword.indexOf(":");
 String user = nameAndPassword.substring(0, index);
 String password = nameAndPassword.substring(index+1);

Chapter 4 ■ Programmatic Security192

 // High security: username must be reverse of password.
 if (areEqualReversed(user, password)) {
 showStock(request, response);
 } else {
 askForPassword(response);
 }
 }
 }

 // Show a Web page giving the symbol of the next hot stock.

 private void showStock(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hot Stock Tip!</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>Today's Hot Stock:");
 for(int i=0; i<3; i++) {
 out.print(randomLetter());
 }
 out.println("</H1>\n" +
 "</BODY></HTML>");
 }

 // If no Authorization header was supplied in the request.

private void askForPassword(HttpServletResponse response) {
// Send HTTP 401

 response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
 response.setHeader("WWW-Authenticate",
 "BASIC realm=\"Insider-Trading\"");
 }

 // Returns true if s1 is the reverse of s2.
 // Empty strings don't count.

Listing 4.4 StockTip.java (continued)

4.4 Example: Handling All Security Programmatically 193

 private boolean areEqualReversed(String s1, String s2) {
 s2 = (new StringBuffer(s2)).reverse().toString();
 return((s1.length() > 0) && s1.equals(s2));
 }

 private final String ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 // Returns a random number from 0 to n-1 inclusive.

 private int randomInt(int n) {
 return((int)(Math.random() * n));
 }

 // A random letter from the alphabet.

 private char randomLetter() {
 return(ALPHABET.charAt(randomInt(ALPHABET.length())));
 }
}

Listing 4.5 web.xml (from stocks Web app)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>StockTip</servlet-name>
 <servlet-class>stocks.StockTip</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>StockTip</servlet-name>
 <url-pattern>/stockTip</url-pattern>
 </servlet-mapping>
</web-app>

Listing 4.4 StockTip.java (continued)

Chapter 4 ■ Programmatic Security194

Figure 4–3 When the browser first receives the 401 (Unauthorized) status code, it
opens a dialog box to collect the username and password.

Figure 4–4 Result of cancelled authorization attempt with Tomcat—Tomcat returns an
error page along with the 401 (Unauthorized) status code.

Figure 4–5 Result of successful authorization attempt. Invest now!

4.5 Using Programmatic Security with SSL 195

4.5 Using Programmatic
Security with SSL

SSL can be used with security that is entirely servlet managed, just as it can be with
container-managed security (see Section 3.3). As is typical with servlet-managed
security, this approach is more portable but requires significantly more effort.

The use of SSL in programmatic security may require one or more of the follow-
ing capabilities not needed in normal programmatic security:

• Determining if SSL is in use.
• Redirecting non-SSL requests.
• Discovering the number of bits in the key.
• Looking up the encryption algorithm.
• Accessing client X.509 certificates.

Details on these capabilities follow.

Determining If SSL Is in Use
The ServletRequest interface provides two methods that let you find out if SSL
is in use. The getScheme method returns "http" for regular requests and
"https" for SSL requests. The isSecure method returns false for regular
requests and true for SSL requests.

Redirecting Non-SSL Requests
With container-managed security, you can use the transport-guarantee sub-
element of user-data-constraint to ensure that the server redirects regular
(http) requests to the SSL (https) equivalent. See Section 3.5 (Configuring Tomcat to
Use SSL) for details.

In programmatic security, you might want to explicitly do what the server auto-
matically does with container-managed security. Once you have a URL, redirection is
straightforward: use response.sendRedirect.

The difficulty is in generating the URL in the first place. Unfortunately, there is
no built-in method that says “give me the complete incoming URL with http changed
to https.” So, you have to call request.getRequestURL to get the main URL,
change http to https manually, then tack on any form data by using request.get-
QueryString. You pass that result to response.sendRedirect.

Even this tedious manual approach runs some portability risks. For example, what
if the server is running SSL on a port other than 443 (the default SSL port)? In such

Chapter 4 ■ Programmatic Security196

a case, the approach outlined here redirects to the wrong port. Unfortunately, there
is no general solution to this problem; you simply have to know something about how
the server is configured to redirect to a nonstandard SSL port. However, because you
have to know that the server supports SSL in the first place, this additional burden is
not too onerous.

Discovering the Number of Bits in the Key
Suppose that you have a servlet or JSP page that lets authorized users access your
company’s financial records. You might want to ensure that the most sensitive data is
only sent to users that have a strong (128-bit) level of encryption. Users whose brows-
ers use comparatively weak 40-bit keys should be denied access. To accomplish this
task, you need to be able to discover the level of encryption being used.

In version 2.3 and later of the servlet API, SSL requests automatically result in an
attribute named javax.servlet.request.key_size being placed in the
request object. You can access it by calling request.getAttribute with the spec-
ified name. The value is an Integer that tells you the length of the encryption key.
However, because the return type of getAttribute is Object, you have to per-
form a typecast to Integer. Be sure to check if the result is null to handle
non-SSL requests. Here is a simple example:

String keyAttribute = "javax.servlet.request.key_size";
Integer keySize =

(Integer)request.getAttribute(keyAttribute);
if (keySize != null) { ... }

Looking Up the Encryption Algorithm
In version 2.3 and later of the servlet API, SSL requests also result in an attribute
named javax.servlet.request.cipher_suite being placed in the request
object. You can access it by calling request.getAttribute with the specified
name. The value is a String that describes the encryption algorithm being used.
However, because the return type of getAttribute is Object, you have to per-
form a typecast to String. Be sure to check if the result is null to handle non-SSL
requests. Here is a simple example:

String cipherAttribute = "javax.servlet.request.cipher_suite";
String cipherSuite =

(String)request.getAttribute(cipherAttribute);
if (cipherSuite != null) { ... }

4.6 Example: Programmatic Security and SSL 197

Accessing Client X.509 Certificates
Rather than using a simple username and password, some browsers permit users to
authenticate themselves with X.509 certificates. X.509 certificates are discussed in
RFC 1421. To retrieve RFCs, start at http://www.rfc-editor.org/ to get a current list
of the RFC archive sites.

If the client is authenticated with an X.509 certificate, that certificate is avail-
able by means of the javax.servlet.request.X509Certificate attribute
o f th e r e q ue s t o b j e c t . T h e va l ue i s a n o b j e c t o f t yp e java.secu-
rity.cert.X509Certificate that contains exhaustive information about the
certificate. However, because the return type of getAttribute is Object, you
have to perform a typecast to X509Certificate. Be sure to check if the result is
null to handle non-SSL requests and SSL requests that include no certificate. A
simple example follows.

String certAttribute = "javax.servlet.request.X509Certificate";
X509Certificate certificate =

(X509Certificate)request.getAttribute(certAttribute);
if (certificate != null) { ... }

Once you have an X.509 certificate, you can look up the issuer’s distinguished
name, the serial number, the raw signature value, the public key, and a number of
other pieces of information. For details, see http://java.sun.com/j2se/1.5.0/docs/

api/java/security/cert/X509Certificate.html.

4.6 Example: Programmatic
Security and SSL

Listing 4.6 presents a servlet that redirects non-SSL requests to a URL that is identi-
cal to the URL of the original request except that http is changed to https. When an
SSL request is received, the servlet presents a page that displays information on the
URL, query data, key size, encryption algorithm, and client certificate. Figures 4–6
and 4–7 show the results. Listing 4.7 shows the complete web.xml file used to deploy
the servlet.

In a real application, make sure that you redirect users when they access the serv-
let or JSP page that contains the form that collects the data. Once users submit sensi-
tive data to an ordinary non-SSL URL, it is too late to redirect the request: Attackers
with access to the network traffic could have already obtained the data.

http://www.rfc-editor.org/
http://java.sun.com/j2se/1.5.0/docs/api/java/security/cert/X509Certificate.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/cert/X509Certificate.html

Chapter 4 ■ Programmatic Security198

Listing 4.6 SecurityInfo.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.security.cert.*; // For X509Certificate

/** Servlet that prints information on SSL requests. Non-SSL
 * requests get redirected to SSL.
 */

public class SecurityInfo extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // Redirect non-SSL requests to the SSL equivalent.
 if (request.getScheme().equalsIgnoreCase("http")) {
 String origURL = request.getRequestURL().toString();
 String newURL = httpsURL(origURL);
 String formData = request.getQueryString();
 if (formData != null) {
 newURL = newURL + "?" + formData;
 }
 response.sendRedirect(newURL);
 } else {
 String currentURL = request.getRequestURL().toString();
 String formData = request.getQueryString();
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Security Info";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title +
 "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1>" + title + "</H1>\n" +
 "\n" +
 " URL: " + currentURL + "\n" +
 " Data: " + formData);
 boolean isSecure = request.isSecure();

4.6 Example: Programmatic Security and SSL 199

 if (isSecure) {
 String keyAttribute =
 "javax.servlet.request.key_size";
 // Available only with servlets 2.3
 Integer keySize =
 (Integer)request.getAttribute(keyAttribute);
 String sizeString =
 replaceNull(keySize, "Unknown");
 String cipherAttribute =
 "javax.servlet.request.cipher_suite";
 // Available only with servlets 2.3
 String cipherSuite =
 (String)request.getAttribute(cipherAttribute);
 String cipherString =
 replaceNull(cipherSuite, "Unknown");
 String certAttribute =
 "javax.servlet.request.X509Certificate";
 // Available with servlets 2.2 and 2.3
 X509Certificate certificate =
 (X509Certificate)request.getAttribute(certAttribute);
 String certificateString =
 replaceNull(certificate, "None");
 out.println
 (" SSL: true\n" +
 " \n" +
 " Key Size: " + sizeString + "\n" +
 " Cipher Suite: " + cipherString + "\n" +
 " Client Certificate: " +
 certificateString + "\n" +
 " ");
 }
 out.println
 ("\n" +
 "</BODY></HTML>");
 }
 }

 // Given http://blah, return https://blah.

 private String httpsURL(String origURL) {
 int index = origURL.indexOf(":");
 StringBuffer newURL = new StringBuffer(origURL);
 newURL.insert(index, 's');
 return(newURL.toString());
 }

Listing 4.6 SecurityInfo.java (continued)

Chapter 4 ■ Programmatic Security200

 // If the first argument is null, return the second argument.
 // Otherwise, convert first argument to a String and
 // return that String.

 private String replaceNull(Object obj, String fallback) {
 if (obj == null) {
 return(fallback);
 } else {
 return(obj.toString());
 }
 }
}

Listing 4.7 web.xml (from securityInfo Web app)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>SecurityInfo</servlet-name>
 <servlet-class>coreservlets.SecurityInfo</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SecurityInfo</servlet-name>
 <url-pattern>/securityInfo</url-pattern>
 </servlet-mapping>
</web-app>

Listing 4.6 SecurityInfo.java (continued)

4.6 Example: Programmatic Security and SSL 201

Figure 4–6 New certificate page for Firefox. Examine and accept the certificate
permanently to suppress future warnings. For details on creating self-signed certificates for
use with Tomcat, see Section 3.7 (Signing a Server Certificate). Again, self-signed
certificates would not be trusted in real-world applications; they are for testing purposes
only.

Figure 4–7 Result of the SecurityInfo servlet.

SERVLET AND
JSP FILTERS

Topics in This Chapter

• Designing basic filters

• Reading request data

• Accessing the servlet context

• Initializing filters

• Blocking the servlet or JSP response

• Modifying the servlet or JSP response

• Using filters for debugging and logging

• Using filters to monitor site access

• Using filters to replace strings

• Using filters to compress the response

• Configuring filters for different request types

203

ChapterChapter 5

A filter is a program that runs on the server before the servlet or JSP page with which
it is associated. A filter can be attached to one or more servlets or JSP pages and can
examine the request information going into these resources. After doing so, it can
choose among the following options:

• Invoke the resource (i.e., the servlet or JSP page) in the normal
manner.

• Invoke the resource with modified request information.
• Invoke the resource but modify the response before sending it to the

client.
• Prevent the resource from being invoked and instead redirect to a

different resource, return a particular status code, or generate
replacement output.

This capability provides several important benefits.
First, it lets you encapsulate common behavior in a modular and reusable manner.

Do you have 30 different servlets or JSP pages that need to compress their content to
decrease download time? No problem: Make a single compression filter (Section
5.11) and apply it to all 30 resources.

Second, it lets you separate high-level access decisions from presentation code.
This is particularly valuable with JSP, where you usually want to keep the page almost
entirely focused on presentation, not processing business logic. For example, do you
want to block access from certain sites without modifying the individual pages to

Chapter 5 ■ Servlet and JSP Filters204

which these access restrictions apply? No problem: Create an access restriction filter
(Section 5.8) and apply it to as many or few pages as you like.

Finally, filters let you apply wholesale changes to many different resources. Do
you have a bunch of existing resources that should remain unchanged except that the
company name should be changed? No problem: Make a string replacement filter
(Section 5.10) and apply it wherever appropriate.

5.1 Creating Basic Filters

Creating a filter involves five basic steps:

1. Create a class that implements the Filter interface. Your class
will need three methods: doFilter, init, and destroy. The
doFilter method contains the main filtering code (see Step 2), the
init method performs setup operations, and the destroy method
does cleanup.

2. Put the filtering behavior in the doFilter method. The first
argument to the doFilter method is a ServletRequest object.
This object gives your filter full access to the incoming information,
including form data, cookies, and HTTP request headers. The second
argument is a ServletResponse; it is mostly ignored in simple fil-
ters. The final argument is a FilterChain; it is used to invoke the
servlet, JSP page, or the next filter in the chain as described in the next
step.

3. Call the doFilter method of the FilterChain object. The
doFilter method of the Filter interface takes a FilterChain
object as one of its arguments. When you call the doFilter method
of that object, the next associated filter is invoked. If no other filter is
associated with the servlet or JSP page, then the servlet or page itself
is invoked.

4. Register the filter with the appropriate servlets and JSP pages.
Use the filter and filter-mapping elements in the deployment
descriptor (web.xml).

5. Disable the invoker servlet. Prevent users from bypassing filter set-
tings by using default servlet URLs.

Details follow.

5.1 Creating Basic Filters 205

Create a Class That Implements
the Filter Interface

All filters must implement javax.servlet.Filter. This interface comprises
three methods: doFilter, init, and destroy.

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

throws ServletException, IOException

The doFilter method is executed each time a filter is invoked (i.e., once for
each request for a servlet or JSP page with which the filter is associated). It is
this method that contains the bulk of the filtering logic.

The first argument is the ServletRequest associated with the incoming
request. For simple filters, most of your filter logic is based on this object. Cast
the object to HttpServletRequest if you are dealing with HTTP requests
and you need access to methods such as getHeader or getCookies that are
unavailable in ServletRequest.

The second argument is the ServletResponse. In simple filters you
often ignore this argument, but there are two cases when you use it. First, if
you want to completely block access to the associated servlet or JSP page, you
can call response.getWriter and send a response directly to the client.
Section 5.7 (Blocking the Response) gives details; Section 5.8 (Example: A Pro-
hibited-Site Filter) gives an example. Second, if you want to modify the output
of the associated servlet or JSP page, you can wrap the response inside an
object that collects all output sent to it. Then, after the servlet or JSP page is
invoked, the filter can examine the output, modify it if appropriate, and then
send it to the client. See Section 5.9 (Modifying the Response) for details.

The final argument to doFilter is a FilterChain object. You call
doFilter on this object to invoke the next filter that is associated with the
servlet or JSP page. If no other filters are in effect, then the call to doFilter
invokes the servlet or JSP page itself.

public void init(FilterConfig config)
throws ServletException

The init method is executed only when the filter is first initialized. It is not
executed each time the filter is invoked. For simple filters you can provide an
empty body to this method, but there are two common reasons for using init.
First, the FilterConfig object provides access to the servlet context and to

Chapter 5 ■ Servlet and JSP Filters206

the name of the filter that is assigned in the web.xml file. So, it is common to
use init to store the FilterConfig object in a field so that the doFilter
method can access the servlet context or the filter name. This process is
described in Section 5.3 (Accessing the Servlet Context from Filters). Second,
the FilterConfig object has a getInitParameter method that lets you
access filter initialization parameters that are assigned in the deployment
descriptor (web.xml). Use of initialization parameters is described in Section
5.5 (Using Filter Initialization Parameters).

public void destroy()

This method is called when a server is permanently finished with a given filter
object (e.g., when the server is being shut down). Most filters simply provide an
empty body for this method, but it can be used for cleanup tasks like closing
files or database connection pools that are used by the filter.

Put the Filtering Behavior
in the doFilter Method

The doFilter method is the key part of most filters. Each time a filter is invoked,
doFilter is executed. With most filters, the steps that doFilter performs are
based on the incoming information. So, you will probably make use of the Servlet-
Request that is supplied as the first argument to doFilter. This object is fre-
quently typecast to HttpServletRequest to provide access to the more
specialized methods of that class.

Call the doFilter Method
of the FilterChain Object

The doFilter method of the Filter interface takes a FilterChain object as its
third argument. When you call the doFilter method of that object, the next associ-
ated filter is invoked. This process normally continues until the last filter in the chain
is invoked. When the final filter calls the doFilter method of its FilterChain
object, the servlet or page itself is invoked.

However, any filter in the chain can interrupt the process by omitting the call to
the doFilter method of its FilterChain. In such a case, the servlet or JSP page
is never invoked and the filter is responsible for providing output to the client. For
details, see Section 5.7 (Blocking the Response).

5.1 Creating Basic Filters 207

Register the Filter with the
Appropriate Servlets and JSP Pages

The deployment descriptor provides two elements for use with filters: filter and
filter-mapping. The filter element registers a filtering object with the sys-
tem. The filter-mapping element specifies the URLs to which the filtering
object applies.

The filter Element
The filter element contains six possible subelements:

• icon. This is an optional element that declares an image file that an
IDE can use.

• filter-name. This is a required element that assigns a name of your
choosing to the filter.

• display-name. This is an optional element that provides a short
name for use by IDEs.

• description. This is another optional element that gives
information for IDEs. It provides textual documentation.

• filter-class. This is a required element that specifies the fully
qualified name of the filter implementation class.

• init-param. This is an optional element that defines an initialization
parameter that can be read with the getInitParameter method of
FilterConfig. A single filter element can contain multiple
init-param elements.

Here is a simple example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app ... version="2.4">

<filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>myPackage.FilterClass</filter-class>
 </filter>

<filter-mapping>...</filter-mapping>
...

</web-app>

Chapter 5 ■ Servlet and JSP Filters208

The filter-mapping Element
The filter-mapping element contains four possible subelements:

• filter-name. This required element must match the name you
gave to the filter when you declared it with the filter element.

• url-pattern. This element declares a pattern starting with either a
slash (/) or a *. that designates the URLs to which the filter applies.
The same rules apply to url-pattern of filter-mapping as to
url-pattern of servlet-mapping. For more detail see Section
2.4 (Assigning Names and Custom URLs). You must supply
url-pattern or servlet-name in all filter-mapping elements.
You cannot provide multiple url-pattern entries with a single
filter-mapping element, however. If you want the filter to apply to
multiple patterns, repeat the entire filter-mapping element.

• servlet-name. This element gives a name that must match a name
given to a servlet or JSP page by means of the servlet element. For
details on the servlet element, see Section 2.4 (Assigning Names
and Custom URLs). You cannot provide multiple servlet-name
elements entries with a single filter-mapping element. If you
want the filter to apply to multiple servlet names, repeat the entire
filter-mapping element.

• dispatcher. This optional element specifies what type of request
this filter mapping should apply to. Possible values are REQUEST,
FORWARD, INCLUDE, and ERROR. If no dispatcher element is
specified, REQUEST is assumed. To allow the same filter to apply to
different types of requests, several dispatcher elements may be
used. For more information on the dispatcher element, see
Section 5.12 (Configuring Filters to Work with RequestDispatcher).

Here is a simple example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app ... version="2.4">

 <filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>myPackage.FilterClass</filter-class>
 </filter>

<filter-mapping>
<filter-name>MyFilter</filter-name>
<url-pattern>/someDirectory/SomePage.jsp</url-pattern>

</filter-mapping>
...

</web-app>

5.1 Creating Basic Filters 209

Disable the Invoker Servlet
When you apply filters to resources, you do so by specifying the URL pattern or serv-
let name to which the filters apply. If you supply a servlet name, that name must
match a name given in the servlet element of web.xml. If you use a URL pattern
that applies to a servlet, the pattern must match a pattern that you specified with the
servlet-mapping web.xml element—see Section 2.4 (Assigning Names and Cus-
tom URLs). However, most servers use an “invoker servlet” that provides a default
URL for servlets: http://host/webAppPrefix/servlet/ServletName. You need to make
sure that users don’t access servlets with this URL, thus bypassing the filter settings.

Section 2.5 (Disabling the Invoker Servlet) discusses server-specific approaches to
turning off the invoker. The most portable approach, however, is to simply remap the
/servlet/* pattern in your Web application so that all requests that include the
pattern are sent to the same servlet. To remap the pattern, you first create a simple serv-
let that prints an error message. Then, you use the servlet and servlet-mapping
elements (Section 2.3) to send requests that include the /servlet/* pattern to that
servlet. Listing 5.1 gives a brief example.

Listing 5.1 web.xml (Excerpt that blocks default servlet URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

...
</web-app>

Chapter 5 ■ Servlet and JSP Filters210

5.2 Example: A Reporting Filter

Just to warm up, let’s try a simple filter that merely prints a message to standard out-
put whenever the associated servlet or JSP page is invoked. To accomplish this task,
we implement the following capabilities.

1. A class that implements the Filter interface. This class is called
ReportFilter and is shown in Listing 5.2. The class provides empty
bodies for the init and destroy methods.

2. Filtering behavior in the doFilter method. Each time a servlet
or JSP page associated with this filter is invoked, the doFilter
method generates a printout that lists the requesting host and the
URL that was invoked. Because the getRequestURL method is in
HttpServletRequest, not ServletRequest, we cast the
ServletRequest object to HttpServletRequest.

3. A call to the doFilter method of the FilterChain. After print-
ing the report, the filter calls the doFilter method of the Filter-
Chain to invoke the servlet or JSP page (or the next filter in the chain,
if there is one).

4. Registration with the Web application home page and the
servlet that displays the daily special. First, the filter element
associates the name Reporter with the class coreservlets.
filters.ReportFilter. Then, the filter-mapping element
uses a url-pattern of /index.jsp to associate the filter with
the home page. Finally, the filter-mapping element uses a
servlet-name of TodaysSpecial to associate the filter with the
daily special servlet (the name TodaysSpecial is declared in the
servlet element). See Listing 5.3.

5. Disablement of the invoker servlet. First, we create NoInvoker-
Servlet (Listing 5.6) that generates an error message stating that the
invoker servlet has been disabled. Next, we use the servlet and
servlet-mapping elements (Listing 5.3) to specify that all URLs
that begin with http://host/webAppPrefix/servlet/ should invoke the
NoInvokerServlet.

Given these settings, the filter is invoked each time a client requests the Web
application home page (Listing 5.4 and Figure 5–1) or the daily special servlet (List-
ing 5.5 and Figure 5–2).

5.2 Example: A Reporting Filter 211

Listing 5.2 ReportFilter.java

package coreservlets.filters;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple filter that prints a report on the standard output
 * each time an associated servlet or JSP page is accessed.
 */
public class ReportFilter implements Filter {
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 System.out.println(req.getRemoteHost() +
 " tried to access " +
 req.getRequestURL() +
 " on " + new Date() + ".");
 chain.doFilter(request,response);
 }

 public void init(FilterConfig config) {}

 public void destroy() {}
}

Listing 5.3 web.xml (Excerpt for reporting filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Register the name "Reporter" for ReportFilter. -->
<filter>

 <filter-name>Reporter</filter-name>
 <filter-class>
 coreservlets.filters.ReportFilter
 </filter-class>

Chapter 5 ■ Servlet and JSP Filters212

 </filter>
 <!-- Apply the Reporter filter to home page. -->

<filter-mapping>
 <filter-name>Reporter</filter-name>
 <url-pattern>/index.jsp</url-pattern>
 </filter-mapping>
 <!-- Also apply the Reporter filter to the servlet named
 "TodaysSpecial". -->

<filter-mapping>
 <filter-name>Reporter</filter-name>
 <servlet-name>TodaysSpecial</servlet-name>
 </filter-mapping>

...

 <!-- Give a name to the Today's Special servlet so that filters
 can be applied to it. -->
 <servlet>
 <servlet-name>TodaysSpecial</servlet-name>
 <servlet-class>
 coreservlets.TodaysSpecialServlet
 </servlet-class>
 </servlet>
 <!-- Make /TodaysSpecial invoke the servlet
 named TodaysSpecial (i.e., coreservlets.TodaysSpecial).
 -->
 <servlet-mapping>
 <servlet-name>TodaysSpecial</servlet-name>
 <url-pattern>/TodaysSpecial</url-pattern>
 </servlet-mapping>

<!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>

</servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

</web-app>

Listing 5.3 web.xml (Excerpt for reporting filter) (continued)

5.2 Example: A Reporting Filter 213

Figure 5–1 Home page for the
filter company. After the page is
deployed on an external server and
the reporting filter is attached, each
client access results in a printout
akin to “purchasing.sun.com tried
to access http://www.filtersrus.com/
filters/index.jsp on Fri Oct 27
13:19:14 EDT 2006.”

Figure 5–2 Page advertising a
special sale. After the page is
deployed on an external server
and the reporting filter is
attached, each client access
results in a printout akin to
“admin.microsoft.com tried to
access http://www.filtersrus.com/
filters/TodaysSpecial on Fri Oct
27 13:21:56 EDT 2006.”

http://www.filtersrus.com/filters/index.jsp
http://www.filtersrus.com/filters/index.jsp
http://www.filtersrus.com/filters/TodaysSpecial
http://www.filtersrus.com/filters/TodaysSpecial

Chapter 5 ■ Servlet and JSP Filters214

Listing 5.4 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Filters 'R' Us</TITLE>
<LINK REL=STYLESHEET
 HREF="filter-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">Filters 'R' Us</TABLE>
<P>
<TABLE>
 <TR>
 <TH>
 <TH>
 <TH>
</TABLE>
<H3>We specialize in the following:</H3>

 Air filters
 Coffee filters
 Pump filters
 Camera lens filters
 Image filters for Adobe Photoshop
 Web content filters
 Kalman filters
 Servlet and JSP filters

Check out Today's Special.
</CENTER>
</BODY></HTML>

5.2 Example: A Reporting Filter 215

Listing 5.5 TodaysSpecialServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Sample servlet used to test the simple filters.
 */
public class TodaysSpecialServlet extends HttpServlet {
 private String title, picture;
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 updateSpecials();
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Today's Special</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"WHITE\">\n" +
 "<CENTER>\n" +
 "<H1>Today's Special: " + title + "s!</H1>\n" +
 "<IMG SRC=\"images/" + picture + "\"\n" +
 " ALT=\"" + title + "\">\n" +
 "<BR CLEAR=\"ALL\">\n" +
 "Special deal: for only twice the price, you can\n" +
 "<I>buy one, get one free!</I>.\n" +
 "</BODY></HTML>");
 }
 // Rotate among the three available filter images.
 private void updateSpecials() {
 double num = Math.random();
 if (num < 0.333) {
 title = "Air Filter";
 picture = "air-filter.jpg";
 } else if (num < 0.666) {
 title = "Coffee Filter";
 picture = "coffee-filter.gif";
 } else {
 title = "Pump Filter";
 picture = "pump-filter.jpg";
 }
 }
}

Chapter 5 ■ Servlet and JSP Filters216

Listing 5.6 NoInvokerServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet used to give error messages to
 * users who try to access default servlet URLs
 * (i.e., http://host/webAppPrefix/servlet/ServletName)
 * in Web applications that have disabled this
 * behavior.
 */
public class NoInvokerServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Invoker Servlet Disabled.";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2>" + title + "</H2>\n" +
 "Sorry, access to servlets by means of\n" +
 "URLs that begin with\n" +
 "http://host/webAppPrefix/servlet/\n" +
 "has been disabled.\n" +
 "</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

5.3 Accessing the Servlet Context from Filters 217

5.3 Accessing the Servlet
Context from Filters

The ReportFilter of the previous section prints a report on the standard output
whenever the designated servlet or JSP page is invoked. A report on the standard
output is fine during development: When you run a server on your desktop, you typi-
cally have a window that displays the standard output. During deployment, however,
you are unlikely to have access to this window. A natural enhancement is to write the
reports into the servlet log file instead of the standard output.

The servlet API provides two log methods: one that takes a simple String and
another that takes a String and a Throwable. These two methods are available
from either the GenericServlet or ServletContext classes. Check your
server’s documentation for the exact location of the log files that these methods use.
For example, Tomcat stores the log files in the tomcat_dir/logs directory. The prob-
lem is that the doFilter method executes before the servlet or JSP page with
which it is associated, so you don’t have access to the servlet instance and thus can’t
call the log methods that are inherited from GenericServlet. Furthermore, the
Filter API provides no simple way to access the ServletContext from the
doFilter method. The only filter-related class that has a method to access the
ServletContext is FilterConfig with its getServletContext method. A
FilterConfig object is passed to the init method but is not automatically stored
in a location that is available to doFilter.

So, you have to store the FilterConfig yourself. Simply create a field (instance
variable) of type FilterConfig, then override init to assign its argument to that
field. Because you typically use the FilterConfig object only to access the Serv-
letContext and the filter name, you can store the ServletContext and name in
fields as well. Here is a simple example:

public class SomeFilter implements Filter {
protected FilterConfig config;

 private ServletContext context;
 private String filterName;

 public void init(FilterConfig config)
 throws ServletException {
 this.config = config; // In case it is needed by subclass.
 context = config.getServletContext();
 filterName = config.getFilterName();
 }

// doFilter and destroy methods...
}

Chapter 5 ■ Servlet and JSP Filters218

5.4 Example: A Logging Filter

Let’s update the ReportFilter (Listing 5.2) so that messages go in the log file
instead of to the standard output. To accomplish this task, we implement the follow-
ing capabilities.

1. A class that implements the Filter interface. This class is called
LogFilter and is shown in Listing 5.7. The init method of this
class stores the FilterConfig, ServletContext, and filter name
in fields of the filter. The class provides an empty body for the
destroy method.

2. Filtering behavior in the doFilter method. There are two dif-
ferences between this behavior and that of the ReportFilter: The
report is placed in the log file instead of the standard output and the
report includes the name of the filter.

3. A call to the doFilter method of the FilterChain. After print-
ing the report, the filter calls the doFilter method of the Filter-
Chain to invoke the next filter in the chain (or the servlet or JSP page
if there are no more filters).

4. Registration with all URLs. First, the filter element associates
the name LogFilter with the class coreservlets.filters.
LogFilter. Next, the filter-mapping element uses a url-
pattern of /* to associate the filter with all URLs in the Web appli-
cation. See Listing 5.8.

5. Disablement of the invoker servlet. This operation is shown in
Section 5.2 (Example: A Reporting Filter) and is not repeated here.

After the Web application is deployed on an external server and the logging filter
is attached, a client request for the Web application home page results in an entry in
the log file like “audits.irs.gov tried to access http://www.filtersrus.com/filters/
index.jsp on Fri Apr 14 15:16:15 EDT 2001. (Reported by Logger.)” On Tomcat, the
log file is located in the tomcat_dir/logs directory. For example, Listing 5.9 shows
partial contents of the localhost.2006-04-14.log file.

http://www.filtersrus.com/filters/index.jsp
http://www.filtersrus.com/filters/index.jsp

5.4 Example: A Logging Filter 219

Listing 5.7 LogFilter.java

package coreservlets.filters;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple filter that prints a report in the log file
 * whenever the associated servlets or JSP pages
 * are accessed.
 */
public class LogFilter implements Filter {
 protected FilterConfig config;
 private ServletContext context;
 private String filterName;

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 context.log(req.getRemoteHost() +
 " tried to access " +
 req.getRequestURL() +
 " on " + new Date() + ". " +
 "(Reported by " + filterName + ".)");
 chain.doFilter(request,response);
 }

public void init(FilterConfig config)
 throws ServletException {
 this.config = config; // In case it is needed by subclass.
 context = config.getServletContext();
 filterName = config.getFilterName();
 }

 public void destroy() {}
}

Chapter 5 ■ Servlet and JSP Filters220

Listing 5.8 web.xml (Excerpt for logging filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Register the name "Logger" for LogFilter. -->
<filter>

 <filter-name>Logger</filter-name>
 <filter-class>
 coreservlets.filters.LogFilter
 </filter-class>
 </filter>
 <!-- Apply the Logger filter to all servlets and
 JSP pages. -->

<filter-mapping>
 <filter-name>Logger</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

Listing 5.9
Partial contents of localhost.2006-04-14.log on
Tomcat

Apr 14, 2006 3:22:14 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/ on
Fri Apr 14 15:22:14 EDT 2006. (Reported by Logger.)
Apr 14, 2006 3:22:15 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/fil-
ter-styles.css on Fri Apr 14 15:22:15 EDT 2006. (Reported by Log-
ger.)
Apr 14, 2006 3:22:15 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/
images/air-filter.jpg on Fri Apr 14 15:22:15 EDT 2006. (Reported
by Logger.)
Apr 14, 2006 3:22:15 PM org.apache.catalina.core.ApplicationCon-
text log

5.5 Using Filter Initialization Parameters 221

5.5 Using Filter Initialization
Parameters

With servlets and JSP pages, you can customize the initialization behavior by supply-
ing initialization parameters. For details, see Section 2.6 (Initializing and Preloading
Servlets and JSP Pages). The reason this capability is useful is that there are three
distinct groups that might want to customize the behavior of servlets or JSP pages:

1. Developers. They customize the behavior by changing the code of
the servlet or JSP page itself.

2. End users. They customize the behavior by entering values in HTML
forms.

3. Deployers. This third group is the one served by initialization param-
eters. Members of this group are people who take existing Web appli-
cations (or individual servlets or JSP pages) and deploy them in a
customized environment. They are not necessarily developers, so it is
not realistic to expect them to modify the servlet and JSP code.
Besides, you often omit the source code when distributing servlets.
So, developers need a standard way to allow deployers to change serv-
let and JSP behavior.

INFO: 127.0.0.1 tried to access http://localhost/filtersrus/
images/coffee-filter.gif on Fri Apr 14 15:22:15 EDT 2006.
(Reported by Logger.)
Apr 14, 2006 3:22:25 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/Secu-
rityHole on Fri Apr 14 15:22:25 EDT 2006. (Reported by Logger.)
Apr 14, 2006 3:22:30 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/Today-
sSpecial on Fri Apr 14 15:22:30 EDT 2006. (Reported by Logger.)
Apr 14, 2006 3:22:32 PM org.apache.catalina.core.ApplicationCon-
text log
INFO: 127.0.0.1 tried to access http://localhost/filtersrus/Today-
sSpecial on Fri Apr 14 15:22:32 EDT 2006. (Reported by Logger.)
...

Listing 5.9
Partial contents of localhost.2006-04-14.log on
Tomcat (continued)

Chapter 5 ■ Servlet and JSP Filters222

If these capabilities are useful for servlets and JSP pages, you would expect them
to also be useful for the filters that apply to servlets and JSP pages. Indeed they are.
However, because filters execute before the servlets or JSP pages to which they are
attached, it is not normally possible for end users to customize filter behavior. Never-
theless, it is still useful to permit deployers (not just developers) to customize filter
behavior by providing initialization parameters. This behavior is accomplished with
the following steps.

1. Define initialization parameters. Use the init-param sub-
element of filter in web.xml along with param-name and
param-value subelements, as follows:

<filter>
<filter-name>SomeFilter</filter-name>
<filter-class>somePackage.SomeFilterClass</filter-class>
<init-param>

<param-name>param1</param-name>
<param-value>value1</param-value>

</init-param>
<init-param>

<param-name>param2</param-name>
<param-value>value2</param-value>

</init-param>
</filter>

2. Read the initialization parameters. Call the getInitParameter
method of FilterConfig from the init method of your filter, as follows:

public void init(FilterConfig config)
throws ServletException {

String val1 = config.getInitParameter("param1");
String val2 = config.getInitParameter("param2");
...

}

3. Parse the initialization parameters. Like servlet and JSP initializa-
tion parameters, each filter initialization value is of type String. So,
if you want a value of another type, you have to convert it yourself. For
example, you would use Integer.parseInt to turn the String
"7" into the int 7. When parsing, don’t forget to check for missing
and malformed data. Missing initialization parameters result in null
being returned from getInitParameter. Even if the parameters
exist, you should consider the possibility that the deployer formatted
the value improperly. For example, when converting a String to an
int, you should enclose the Integer.parseInt call within a try/
catch block that catches NumberFormatException. This handles
null and incorrectly formatted values in one fell swoop.

5.6 Example: An Access Time Filter 223

5.6 Example: An Access Time Filter

The LogFilter of Section 5.4 (Example: A Logging Filter) prints an entry in the
log file every time the associated servlet or JSP page is accessed. Suppose you want to
modify it so that it only notes accesses that occur at unusual times. Because “unusual”
is situation dependent, the servlet should provide default values for the abnormal
time ranges and let deployers override these values by supplying initialization param-
eters. To implement this functionality, we implement the following capabilities.

1. A class that implements the Filter interface. This class is called
LateAccessFilter and is shown in Listing 5.10. The init method
of this class reads the startTime and endTime initialization param-
eters. It attempts to parse these values as type int, using default val-
ues if the parameters are null or not formatted as integers. It then
stores the start and end times, the FilterConfig, the Servlet-
Context, and the filter name in fields (instance variables) of the fil-
ter. Finally, LateAccessFilter provides an empty body for the
destroy method.

2. Filtering behavior in the doFilter method. This method looks
up the current time, sees if it is within the range given by the start and
end times, and prints a log entry if so.

3. A call to the doFilter method of the FilterChain. After print-
ing the report, the filter calls the doFilter method of the Filter-
Chain to invoke the next filter in the chain (or the servlet or JSP page
if there are no more filters).

4. Registration with the Web application home page; definition
of initialization parameters. First, the filter element associates
the name LateAccessFilter with the class coreservlets.
filters.LateAccessFilter. The filter element also includes
two init-param subelements: one that defines the startTime
parameter and another that defines endTime. Because the people
that will be accessing the filtersRus home page are programmers, an
abnormal range is considered to be between 2:00 a.m. and 10:00 a.m.
Finally, the filter-mapping element uses a url-pattern of
/index.jsp to associate the filter with the Web application home
page. See Listing 5.11.

5. Disablement of the invoker servlet. This operation is shown in
Section Section 5.2 (Example: A Reporting Filter) and is not repeated
here.

Chapter 5 ■ Servlet and JSP Filters224

After the Web application is deployed on an external server and the logging filter
is attached, a client request for the Web application home page results in an entry in
the log file like “WARNING: hacker6.filtersrus.com accessed http://www.fil-
tersrus.com/filters/index.jsp on Oct 30, 2006 9:22:09 AM.”

Listing 5.10 LateAccessFilter.java

package coreservlets.filters;

import java.io.*;
import java.text.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Filter that keeps track of accesses that occur
 * at unusual hours.
 */
public class LateAccessFilter implements Filter {
 private FilterConfig config;
 private ServletContext context;
 private int startTime, endTime;
 private DateFormat formatter;

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 GregorianCalendar calendar = new GregorianCalendar();
 int currentTime = calendar.get(Calendar.HOUR_OF_DAY);
 if (isUnusualTime(currentTime, startTime, endTime)) {
 context.log("WARNING: " +
 req.getRemoteHost() +
 " accessed " +
 req.getRequestURL() +
 " on " +
 formatter.format(calendar.getTime()));
 }
 chain.doFilter(request,response);
 }

http://www.filtersrus.com/filters/index.jsp
http://www.filtersrus.com/filters/index.jsp

5.6 Example: An Access Time Filter 225

public void init(FilterConfig config)
 throws ServletException {
 this.config = config;
 context = config.getServletContext();
 formatter =
 DateFormat.getDateTimeInstance(DateFormat.MEDIUM,
 DateFormat.MEDIUM);
 try {
 startTime =
 Integer.parseInt(config.getInitParameter("startTime"));
 endTime =
 Integer.parseInt(config.getInitParameter("endTime"));
 } catch(NumberFormatException nfe) { // Malformed or null
 // Default: access at or after 10 p.m. but before 6 a.m.
 // is considered unusual.
 startTime = 22; // 10:00 p.m.
 endTime = 6; // 6:00 a.m.
 }
 }

 public void destroy() {}

 // Is the current time between the start and end
 // times that are marked as abnormal access times?
 private boolean isUnusualTime(int currentTime,
 int startTime,
 int endTime) {
 // If the start time is less than the end time (i.e.,
 // they are two times on the same day), then the
 // current time is considered unusual if it is
 // between the start and end times.
 if (startTime < endTime) {
 return((currentTime >= startTime) &&
 (currentTime < endTime));
 }
 // If the start time is greater than or equal to the
 // end time (i.e., the start time is on one day and
 // the end time is on the next day), then the current
 // time is considered unusual if it is NOT between
 // the end and start times.
 else {
 return(!isUnusualTime(currentTime, endTime, startTime));
 }
 }
}

Listing 5.10 LateAccessFilter.java (continued)

Chapter 5 ■ Servlet and JSP Filters226

5.7 Blocking the Response

Up to now, all the filters discussed have concluded their doFilter methods by call-
ing the doFilter method of the FilterChain object. This approach is the normal
one—the call to doFilter invokes the next resource in the chain (another filter or
the actual servlet or JSP page).

But what if your filter detects an unusual situation and wants to prevent the origi-
nal resource from being invoked? How can it block the normal response? The answer
is quite simple: Just omit the call to the doFilter method of the FilterChain
object. Instead, the filter can redirect the user to a different page (e.g., with a call to

Listing 5.11 web.xml (Excerpt for access time filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Register the name "LateAccessFilter" for
 coreservlets.filter.LateAccessFilter.
 Supply two initialization parameters:
 startTime and endTime. -->
 <filter>
 <filter-name>LateAccessFilter</filter-name>
 <filter-class>
 coreservlets.filters.LateAccessFilter
 </filter-class>
 <init-param>
 <param-name>startTime</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>endTime</param-name>
 <param-value>10</param-value>
 </init-param>
 </filter>
 <!-- Apply LateAccessFilter to the home page. -->
 <filter-mapping>
 <filter-name>LateAccessFilter</filter-name>
 <url-pattern>/index.jsp</url-pattern>
 </filter-mapping>
</web-app>

5.8 Example: A Prohibited-Site Filter 227

response.sendRedirect) or generate the response itself (e.g., by calling get-
Writer on the response and sending output, just as with a regular servlet). Just
remember that the first two arguments to the filter’s main doFilter method are
declared to be of type ServletRequest and ServletResponse. So, if you want
to use methods specific to HTTP, cast these arguments to HttpServletRequest
and HttpServletResponse, respectively. Here is a brief example:

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

throws ServletException, IOException {
HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse res = (HttpServletResponse)response;
if (isUnusualCondition(req)) {

res.sendRedirect("http://www.somesite.com");
} else {

chain.doFilter(req,res);
}

}

5.8 Example: A Prohibited-Site Filter

Suppose you have a competitor that you want to ban from your site. For example,
this competing company might have a service that accesses your site, removes
advertisements and information that identify your organization, and displays
them to their customers. Or, they might have links to your site that are in framed
pages, thus making it appear that your page is part of their site. You’d like to pre-
vent them from accessing certain pages at your site. However, every time their
Web hosting company boots them off, they simply change domain names and
register with another ISP. You thus want the ability to easily change the domain
names that should be banned.

The solution is to make a filter that uses initialization parameters to obtain a list of
banned sites. Requests originating or referred from these sites result in a warning
message. Other requests proceed normally. To accomplish this functionality, we
implement the following.

1. A class that implements the Filter interface. This class is called
BannedAccessFilter and is shown in Listing 5.12. The init
method of this class first obtains a list of sites from an initialization
parameter called bannedSites. The filter parses the entries in the
resultant String using the String.split method and stores each
individual site name in a HashSet that is accessible through an

Chapter 5 ■ Servlet and JSP Filters228

instance variable (i.e., field) of the filter. The String.split method
is supplied with the regular expression for one or more white space
characters to serve as the delimiter. For more details on Java regular
expressions, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/

regex/Pattern.html. Finally, BannedAccessFilter provides an
empty body for the destroy method.

2. Filtering behavior in the doFilter method. This method looks
up the requesting and referring hosts by using the getRemoteHost
method of ServletRequest and parsing the Referer HTTP
request header, respectively.

3. A conditional call to the doFilter method of the Filter-
Chain. The filter checks to see if the requesting or referring host is
listed in the HashMap of banned sites. If so, it calls the showWarning
method, which sends a custom response to the client. If not, the filter
calls doFilter on the FilterChain object to let the request pro-
ceed normally.

4. Registration with the daily special servlet; definition of initial-
ization parameters. First, the filter element associates the name
BannedAccessFilter with the class coreservlets.filters.
BannedAccessFilter. The filter element also includes an
init-param subelement that specifies the prohibited sites (sepa-
rated by white space). Because the resource that the competing sites
abuse is the servlet that shows the daily special, the
filter-mapping element uses a servlet-name of Todays-
Special. The servlet element assigns the name TodaysSpecial
to coreservlets.TodaysSpecialServlet. See Listing 5.13.

5. Disablement of the invoker servlet. This operation is shown in
Section 5.2 (Example: A Reporting Filter) and is not repeated here.

Listing 5.14 shows a very simple page that contains little but a link to the daily spe-
cial servlet. When that page is hosted on a normal site (Figure 5–3), the link results in
the expected output (Figure 5–4). However, when the page that contains the link is
hosted on a banned site (Figure 5–5), the link results only in a warning page (Figure
5–6)—access to the real servlet is blocked.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

5.8 Example: A Prohibited-Site Filter 229

Figure 5–3 A page that links to the
daily special servlet. This version is
hosted on the desktop development
server.

Figure 5–4 You can successfully
follow the link from the page of
Figure 5–3. The BannedAccess-
Filter does not prohibit access
from localhost.

Figure 5–5 A page that links to the
daily special servlet. This version is
hosted on www.tbiq.com.

www.tbiq.com

Chapter 5 ■ Servlet and JSP Filters230

Listing 5.12 BannedAccessFilter.java

package coreservlets.filters;

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Filter that refuses access to anyone connecting directly
 * from or following a link from a banned site.
 */
public class BannedAccessFilter implements Filter {
 private HashSet<String> bannedSiteTable;

 /** Deny access if the request comes from a banned site
 * or is referred here by a banned site.
 */
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 String requestingHost = req.getRemoteHost();
 String referringHost =
 getReferringHost(req.getHeader("Referer"));
 String bannedSite = null;
 boolean isBanned = false;
 if (bannedSiteTable.contains(requestingHost)) {
 bannedSite = requestingHost;
 isBanned = true;

Figure 5–6 You cannot
successfully follow the link from
the page of Figure 5–5. The
BannedAccessFilter prohibits
access from www.tbiq.com (an
unscrupulous competitor to
filtersRus.com).

www.tbiq.com

5.8 Example: A Prohibited-Site Filter 231

 } else if (bannedSiteTable.contains(referringHost)) {
 bannedSite = referringHost;
 isBanned = true;

if (bannedSiteTable.contains(requestingHost)) {
 bannedSite = requestingHost;
 isBanned = true;
 } else if (bannedSiteTable.contains(referringHost)) {
 bannedSite = referringHost;
 isBanned = true;
 }
 if (isBanned) {
 showWarning(response, bannedSite);
 } else {
 chain.doFilter(request,response);
 }
 }

 /** Create a table of banned sites based on initialization
 * parameters.
 */
 public void init(FilterConfig config)
 throws ServletException {
 bannedSiteTable = new HashSet<String>();
 String bannedSites =
 config.getInitParameter("bannedSites");
 if (bannedSites == null) {
 return;
 }
 // Split using one or more white spaces
 String[] sites = bannedSites.split("\\s++");
 for (String bannedSite: sites) {
 bannedSiteTable.add(bannedSite);
 System.out.println("Banned " + bannedSite);
 }
 }

 public void destroy() {}

 private String getReferringHost(String refererringURLString) {
 try {
 URL referringURL = new URL(refererringURLString);
 return(referringURL.getHost());
 } catch(MalformedURLException mue) { // Malformed or null
 return(null);
 }
 }

Listing 5.12 BannedAccessFilter.java (continued)

Chapter 5 ■ Servlet and JSP Filters232

 // Replacement response that is returned to users
 // who are from or referred here by a banned site.

private void showWarning(ServletResponse response,
 String bannedSite)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Access Prohibited</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"WHITE\">\n" +
 "<H1>Access Prohibited</H1>\n" +
 "Sorry, access from or via " + bannedSite + "\n" +
 "is not allowed.\n" +
 "</BODY></HTML>");
 }
}

Listing 5.13 web.xml (Excerpt for prohibited-site filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Give a name to the Today's Special servlet so that filters
 can be applied to it. -->
 <servlet>
 <servlet-name>TodaysSpecial</servlet-name>
 <servlet-class>
 coreservlets.TodaysSpecialServlet
 </servlet-class>
 </servlet>
 <!-- Make /TodaysSpecial invoke the servlet
 named TodaysSpecial (i.e., coreservlets.TodaysSpecial).
 -->

Listing 5.12 BannedAccessFilter.java (continued)

5.8 Example: A Prohibited-Site Filter 233

 <servlet-mapping>
 <servlet-name>TodaysSpecial</servlet-name>
 <url-pattern>/TodaysSpecial</url-pattern>
 </servlet-mapping>
 <!-- Register the name "BannedAccessFilter" for
 coreservlets.filter.BannedAccessFilter.
 Supply an initialization parameter:
 bannedSites. -->
 <filter>
 <filter-name>BannedAccessFilter</filter-name>
 <filter-class>
 coreservlets.filters.BannedAccessFilter
 </filter-class>
 <init-param>
 <param-name>bannedSites</param-name>
 <param-value>
 www.tbiq.com
 www.bettersite.com
 www.coreservlets.com
 </param-value>
 </init-param>
 </filter>
 <!-- Apply BannedAccessFilter to the servlet named
 "TodaysSpecial". -->
 <filter-mapping>
 <filter-name>BannedAccessFilter</filter-name>
 <servlet-name>TodaysSpecial</servlet-name>
 </filter-mapping>
</web-app>

Listing 5.14 linker.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Link to Filter Company</TITLE>
</HEAD>
<BODY>
<H2 ALIGN="CENTER">Link to Filter Company</H2>
Click
here
to see the daily special at filtersRus.com.
</BODY>
</HTML>

Listing 5.13 web.xml (Excerpt for prohibited-site filter) (continued)

Chapter 5 ■ Servlet and JSP Filters234

5.9 Modifying the Response

So filters can block access to resources or invoke them normally. But what if filters
want to change the response that a resource generates? There don’t appear to be any
methods that provide access to the response that a resource generates. The second
argument to doFilter (the ServletResponse) gives the filter a way to send new
output to a client, but it doesn’t give the filter access to the output of the servlet or
JSP page. How could it? When the doFilter method is first invoked, the servlet or
JSP page hasn’t even executed yet. Once you call the doFilter method of the Fil-
terChain object, it appears to be too late to modify the response—data has already
been sent to the client. Hmm, a quandary.

The solution is to change the response object that is passed to the doFilter method
of the FilterChain object. You create a response object that looks like an ordinary
HttpServletResponse object to the servlet or JSP page. However, when the servlet
or JSP page calls response.getWriter or response.getOutputStream and
starts sending output, the output doesn’t really get sent to the client. Instead, it gets
buffered up into a large string where the filter can examine or modify it before really
sending it to the client. The servlet API provides a useful resource for this purpose: the
HttpServletResponseWrapper class. Use of this class involves five steps:

1. Create a response wrapper. Extend javax.servlet.http.
HttpServletResponseWrapper.

2. Provide a PrintWriter and a ServletOutputStream that
buffer output. Override the getWriter and getOutputStream
methods to return a PrintWriter and a ServletOutputStream
that save everything sent to them and store that result in a field that
can be accessed later. The reason we need to override both get-
Writer and getOutputStream is because the servlet providing the
actual output is free to use either getWriter or getOutputStream
methods. However, remember that it is illegal to call both of those
methods on the same response object, so we are guaranteed that only
one of those methods will be called.

3. Pass that wrapper to doFilter. This call is legal because Http-
ServletResponseWrapper implements HttpServletResponse.

4. Extract and modify the output. After the call to the doFilter
method of the FilterChain, the output of the original resource is
available to you through whatever mechanism you provided in Step 2.
You can modify or replace it as appropriate for your application.

5. Send the modified output to the client. Because the original resource
no longer sends output to the client (the output is stored in your response
wrapper instead), you have to send the output. Your filter needs to obtain
the PrintWriter or ServletOutputStream from the original
response object and pass the modified output to that stream.

5.9 Modifying the Response 235

A Reusable Response Wrapper
Listing 5.15 presents a wrapper that can be used in most applications where you want
filters to modify a resource’s output. The StringWrapper class overrides the get-
Writer and getOutputStream methods to return a PrintWriter or a Serv-
letOutputStream, respectively, that accumulate everything in a large string. This
result is available to the developer through the toStringBuffer or toString
methods. We need to do a bit more work to override the getOutputStream
method. The ServletOutputStream, which getOutputStream must return,
happens to be an abstract class, so there is no way for us to create it right away.
Instead, we have to provide our own implementation of it so it does what we want,
namely, buffer up the output instead of sending it straight to the client. Listing 5.16
shows the StringOutputStream class, which does just that. Now, we are able to
return an instance of type StringOutputStream from the getOutputStream
method because StringOutputStream extends ServletOutputStream.

Sections 5.10 (Example: A Replacement Filter) and 5.11 (Example: A Compres-
sion Filter) give two examples of use of this class.

Listing 5.15 StringWrapper.java

package coreservlets.filters;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A response wrapper that takes everything the client
 * would normally output and saves it in one large string.
 */
public class StringWrapper
 extends HttpServletResponseWrapper {
 private StringWriter stringWriter;

 /** Initializes wrapper.
 * <P>
 * First, this constructor calls the parent
 * constructor. That call is crucial so that the response
 * is stored and thus setHeader, setStatus, addCookie,
 * and so forth work normally.
 * <P>
 * Second, this constructor creates a StringWriter
 * that will be used to accumulate the response.
 */

Chapter 5 ■ Servlet and JSP Filters236

public StringWrapper(HttpServletResponse response) {
 super(response);
 stringWriter = new StringWriter();
 }

 /** When servlets or JSP pages ask for the Writer,
 * don't give them the real one. Instead, give them
 * a version that writes into the StringBuffer.
 * The filter needs to send the contents of the
 * buffer to the client (usually after modifying it).
 */

public PrintWriter getWriter() {
 return(new PrintWriter(stringWriter));
 }
 /** Similarly, when resources call getOutputStream,
 * give them a phony output stream that just
 * buffers up the output.
 */

public ServletOutputStream getOutputStream() {
 return(new StringOutputStream(stringWriter));
 }

 /** Get a String representation of the entire buffer.
 * <P>
 * Be sure <I>not</I> to call this method multiple times
 * on the same wrapper. The API for StringWriter
 * does not guarantee that it "remembers" the previous
 * value, so the call is likely to make a new String
 * every time.
 */

 public String toString() {
 return(stringWriter.toString());
 }

 /** Get the underlying StringBuffer. */

 public StringBuffer getBuffer() {
 return(stringWriter.getBuffer());
 }
}

Listing 5.15 StringWrapper.java (continued)

5.10 Example: A Replacement Filter 237

5.10 Example: A Replacement Filter

This section presents one common application of the StringWrapper shown in the
previous section: a filter that changes all occurrences of a target string to some
replacement string.

A Generic Modification Filter
Listing 5.17 presents a filter that wraps the response in a StringWrapper, passes
that wrapper to the doFilter method of the FilterChain object, extracts a
String that represents all of the resource’s output, and calls the doModification
method, passing it the original output string. The doModification method makes
changes to the original output and returns the modified output string. It is the modi-
fied output that gets actually sent to the client.

There is one thing to note about this filter—it is an abstract class. To use it, you
must create a subclass that provides the implementation of the doModification
method. This setup allows us to adapt this generic modification filter to whatever our

Listing 5.16 StringOutputStream.java

package coreservlets.filters;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** StringOutputStream is a stub for ServletOutputStream which
 * buffers up the output in a string buffer instead of sending it
 * straight to the client.
 */
public class StringOutputStream
 extends ServletOutputStream {
 private StringWriter stringWriter;

 public StringOutputStream(StringWriter stringWriter) {
 this.stringWriter = stringWriter;
 }

public void write(int c) {
 stringWriter.write(c);
 }
}

Chapter 5 ■ Servlet and JSP Filters238

response modification needs might be in the future, preparing the setup for better
code reuse. The next subsection includes an example of this process.

Listing 5.17 ModificationFilter.java

package coreservlets.filters;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Generic modification filter that buffers the output and lets
 * doModification method change the output string before sending
 * it to the real output, i.e., the client. This is an abstract
 * class: you <I>must</I> override doModification in a subclass.
 */
public abstract class ModificationFilter implements Filter {
 protected FilterConfig config;
 private HttpServletRequest request;
 private HttpServletResponse response;

 public void doFilter(ServletRequest req,
 ServletResponse resp,
 FilterChain chain)
 throws ServletException, IOException {
 request = (HttpServletRequest)req;
 response = (HttpServletResponse)resp;
 StringWrapper responseWrapper = new StringWrapper(response);
 // Invoke resource, accumulating output in the wrapper.
 chain.doFilter(request, responseWrapper);
 // Turn entire output into one big String.
 String modifiedResponse =
 doModification(responseWrapper.toString());

// Send modified response to the client
 PrintWriter out = response.getWriter();
 out.write(modifiedResponse);
 }

 /** Classes extending from ModificationFilter must
 * override this method.
 */

public abstract String doModification(String origResponse)
 throws IOException;

 /** Saving off the request object for potential use by the child
 * class.
 */

5.10 Example: A Replacement Filter 239

A Specific Modification Filter
Oh no! A competitor bought out filtersRus.com. All the Web pages that refer to the
company name are now obsolete. However, the developers hate to change all their
Web pages because another takeover could occur anytime (this company is a hot
commodity, after all). No problem—Listing 5.18 presents a filter that replaces all
occurrences of filtersRus.com with weBefilters.com. Figure 5–7 shows a
page (Listing 5.20) that promotes the filtersRus.com site name. Figure 5–8 shows the
page after the filter is applied.

To accomplish this functionality, we implement the following capabilities.

1. A class that implements the Filter interface. This class is called
ReplaceSiteNameFilter and is shown in Listing 5.18. It extends
the generic ModificationFilter of Listing 5.17. The inherited
init method stores the FilterConfig object in a field. The private
getInitParameter method uses the FilterConfig object to
retrieve the values of the init parameters target and replacement
from web.xml. The doModification method uses the regular
expression-based String.replaceAll method to replace every
occurrence of the target string with the replacement string. The
parent class also provides an empty body for the destroy method.

2. A wrapped response object. The doFilter method, inherited
from ModificationFilter, wraps the ServletResponse object
in a StringWrapper and passes that wrapper to the doFilter

 public HttpServletRequest getRequest() {
 return(request);
 }

 /** Saving off the response object for potential use by the child
 * class.
 */
 public HttpServletResponse getResponse() {
 return(response);
 }

 public void init(FilterConfig config) {
 // Save FilterConfig object for later use by subclasses
 this.config = config;
 }

 public void destroy() {}
}

Listing 5.17 ModificationFilter.java (continued)

Chapter 5 ■ Servlet and JSP Filters240

method of the FilterChain object. After this call completes, all
other filters and the final resource have executed and the output is
inside the wrapper. So, the original doFilter extracts a String that
represents all of the resource’s output and passes it to the doModifi-
cation method, which performs some modifications of the output.
Finally, doFilter sends that modified result to the client by supply-
ing the modified String to the write method of the PrintWriter
that is associated with the original response.

3. Registration with the JSP page that promotes filtersRus.com.
First, the filter element of web.xml (Listing 5.19) associates the
name ReplaceSiteNameFilter with the class coreservlets.
filters.ReplaceSiteNameFilter, specifying two init parame-
ters: target and replacement. Next, the filter-mapping
element uses a url-pattern of /plugSite/page2.jsp (see
Listing 5.20) so that the filter fires each time that JSP page is requested.

4. Disablement of the invoker servlet. This operation is shown in
Section 5.2 (Example: A Reporting Filter) and is not repeated here.

Figure 5–7 A page that promotes
the filtersRus.com site.

5.10 Example: A Replacement Filter 241

Figure 5–8 The page that promotes the filtersRus.com site after its output is modified
by the ReplaceSiteNameFilter.

Listing 5.18 ReplaceSiteNameFilter.java

package coreservlets.filters;

/** Filter that replaces all occurrences of the target
 * string with the replacement string. The target and
 * replacement strings are provided as init parameters
 * to the filter in the web.xml file.
*/

public class ReplaceSiteNameFilter extends ModificationFilter {
private boolean isCaseInsensitive = false;

Chapter 5 ■ Servlet and JSP Filters242

 /** The string that needs replacement.
 */
 public String getTarget() {
 return getInitParameter("target");
 }

 /** The string that replaces the target.
 */
 public String getReplacement() {
 return getInitParameter("replacement");
 }

 /** Returns the init parameter value specified by 'param' or
 * null if it is not present or an empty string
 */

private String getInitParameter(String param) {
 String value = config.getInitParameter(param);
 if ((value == null) || (value.trim().equals(""))) {
 value = null;
 }
 return value;
 }

 /** Sets whether the search for the target string
 * will be case sensitive.
 */
 public void setCaseInsensitive(boolean flag) {
 isCaseInsensitive = flag;
 }
 /** Returns true or false, indicating if the search
 * for the target string is case sensitive.
 */
 public boolean isCaseInsensitive() {
 return(isCaseInsensitive);
 }

 /** Replaces all strings matching the target string
 * with the replacement string.
 */

public String doModification(String orig) {
 if ((getTarget() == null) || (getReplacement() == null)) {
 return(orig);
 } else {

Listing 5.18 ReplaceSiteNameFilter.java (continued)

5.10 Example: A Replacement Filter 243

 String target = getTarget();
 if (isCaseInsensitive()) {
 target = "(?i)" + target;
 }
 String replacement = getReplacement();
 return(orig.replaceAll(target, replacement));
 }
 }
}

Listing 5.19 web.xml (Excerpt for site name replacement filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Register the name "ReplaceSiteNameFilter" for
 coreservlets.filters.ReplaceSiteNameFilter. -->
 <filter>
 <filter-name>ReplaceSiteNameFilter</filter-name>
 <filter-class>
 coreservlets.filters.ReplaceSiteNameFilter
 </filter-class>

<init-param>
 <param-name>target</param-name>
 <param-value>filtersRus.com</param-value>
 </init-param>
 <init-param>
 <param-name>replacement</param-name>
 <param-value>weBefilters.com</param-value>
 </init-param>
 </filter>
 <!-- Apply ReplaceSiteNameFilter to page2.jsp page
 in the plugSite directory -->
 <filter-mapping>
 <filter-name>ReplaceSiteNameFilter</filter-name>
 <url-pattern>/plugSite/page2.jsp</url-pattern>
 </filter-mapping>
</web-app>

Listing 5.18 ReplaceSiteNameFilter.java (continued)

Chapter 5 ■ Servlet and JSP Filters244

Listing 5.20 page1.jsp (Identical to page2.jsp)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>filtersRus.com</TITLE>
<LINK REL=STYLESHEET
 HREF="../filter-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">filtersRus.com</TABLE>
<P>
<TABLE>
 <TR>
 <TH><IMG SRC="../images/air-filter.jpg"
 ALT="Air Filter">
 <TH><IMG SRC="../images/coffee-filter.gif"
 ALT="Coffee Filter">
 <TH><IMG SRC="../images/pump-filter.jpg"
 ALT="Pump Filter">
</TABLE>
<H3>filtersRus.com specializes in the following:</H3>

 Air filters
 Coffee filters
 Pump filters
 Camera lens filters
 Image filters for Adobe Photoshop
 Web content filters
 Kalman filters
 Servlet and JSP filters

Check out Today's Special.
</CENTER>
</BODY></HTML>

5.11 Example: A Compression Filter 245

5.11 Example: A Compression Filter

Most recent browsers can handle gzipped content, automatically uncompressing
documents that have gzip as the value of the Content-Encoding response
header and then treating the result as though it were the original document. Sending
such compressed content can be a real time saver because the time required to com-
press the document on the server and then uncompress it on the client is typically
dwarfed by the savings in download time, especially when dial-up connections are
used. For example, Listing 5.22 shows a servlet that has very long, repetitive,
plain-text output: a ripe candidate for compression. If gzip could be applied, it could
compress the output by a factor of over 300!

However, although most browsers support this type of encoding, a few do not.
Sending compressed content to browsers that don’t support gzip encoding produces
a totally garbled result. Browsers that support content encoding include most ver-
sions of Netscape for UNIX, most versions of Internet Explorer for Windows,
Netscape 4.7 and later for Windows, Firefox, and Opera 5.12 and above. Therefore,
this compression cannot be done blindly—it is only valid for clients that use the
Accept-Encoding request header to specify that they support gzip.

We demonstrate very similar functionality in Core Servlets and JavasServer Pages,
Volume 1: Core Technologies, compressing the output right in the servlet. However,
because we would like to be able to apply this behavior to multiple resources, a filter
is a much more appropriate place for it. The compression filter can use the String-
Wrapper of Section 5.9 (Modifying the Response) to compress content when the
browser supports such a capability. Accomplishing this task requires the following:

1. A class that implements the Filter interface. This class is called
CompressionFilter and is shown in Listing 5.21. The init
method stores the FilterConfig object in a field in case subclasses
need access to the servlet context or filter name. The body of the
destroy method is left empty.

2. A wrapped response object. The doFilter method checks if the
client indicates that it supports compression (i.e., has gzip as one of
the values of its Accept-Encoding header). If it doesn’t, we invoke
the doFilter method of the FilterChain object with the original
response and request objects. If the client supports gzip compres-
sion, the doFilter method wraps the ServletResponse object in
a StringWrapper and passes that wrapper to the doFilter
method of the FilterChain object. After this call completes, all
other filters and the final resource have executed and the output is
inside the wrapper. So the original doFilter extracts a String that
represents all of the resource’s output. We then wrap a ByteArray-

Chapter 5 ■ Servlet and JSP Filters246

OutputStream in a GZIPOutputStream. We wrap the resultant
GZIPOutputStream in an OutputStreamWriter, enabling us to
pass a String through the compression mechanism. Using the
toString method of the StringWrapper, we copy the original
buffered output into the OutputStreamWriter. Finally, doFilter
sends the compressed output to the client by writing the entire under-
lying byte array of our stream chain (e.g., ByteArrayOutput-
Stream, GZIPOutputStream, and OutputStreamWriter) to the
OutputStream that is associated with the original response object.

3. Registration with long servlet. First, the filter element of
web.xml (Listing 5.23) associates the name CompressionFilter
with the class coreservlets.filters.CompressionFilter.
Next, the filter-mapping element uses a servlet-name of
LongServlet so that the filter fires each time that long servlet
(Listing 5.22) is requested. The servlet and servlet-mapping
elements assign the name LongServlet to the servlet and specify
the URL that corresponds to the servlet.

4. Disablement of the invoker servlet. This operation is shown in
Section 5.2 (Example: A Reporting Filter) and is not repeated here.

When the filter is attached, the body of the servlet is reduced 300 times and the
time to access the servlet on a 28.8K modem is reduced by more than a factor of 10
(more than 50 seconds uncompressed; less than 5 seconds compressed), a huge sav-
ings. Figure 5–9 shows the page that the compression filter was used on. However,
two small warnings are in order here.

First, there is a saying in the software industry that there are three kinds of lies:
lies, darn lies, and benchmarks. The point of this maxim is that people always rig
benchmarks to cast their point in the most favorable light possible. We did the same
thing by using a servlet with long simple output and using a slow modem connection.
So, we’re not promising that you will always get a tenfold performance gain, but it is
a simple matter to attach or detach the compression filter. That’s the beauty of filters.
Try it yourself and see how much it buys you in typical usage conditions.

Second, although the specification does not officially mandate that you set
response headers before calling the doFilter method of the FilterChain, some
servers require you to do so. This is to prevent you from attempting to set a response
header after a resource has sent content to the client. So, for portability, be sure to
set response headers before calling chain.doFilter.

Core Warning

If your filter sets response headers, be sure it does so before calling the
doFilter method of the FilterChain object.

5.11 Example: A Compression Filter 247

Figure 5–9 The LongServlet. The content is more than 300 times smaller when gzip is
used, resulting in more than a tenfold speed increase when the servlet is accessed with a
28.8K modem.

Listing 5.21 CompressionFilter.java

package coreservlets.filters;

import java.io.*;
import java.util.zip.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Filter that compresses output with gzip
 * (assuming that browser supports gzip).
 */
public class CompressionFilter implements Filter {
 private FilterConfig config;

 /** If browser does not support gzip, invoke resource
 * normally. If browser <I>does</I> support gzip,
 * set the Content-Encoding response header and
 * invoke resource with a wrapped response that
 * collects all the output. Extract the output
 * and write it into a gzipped byte array. Finally,
 * write that array to the client's output stream.
 */

Chapter 5 ■ Servlet and JSP Filters248

 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest)request;
 HttpServletResponse res = (HttpServletResponse)response;
 if (!isGzipSupported(req)) {
 // Invoke resource normally.
 chain.doFilter(req,res);
 } else {
 // Tell browser we are sending it gzipped data.
 res.setHeader("Content-Encoding", "gzip");

 // Invoke resource, accumulating output in the wrapper.
 StringWrapper responseWrapper =
 new StringWrapper(res);
 chain.doFilter(req,responseWrapper);

 // Make a writer that compresses data and puts
 // it into a byte array.
 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream();
 GZIPOutputStream zipOut =
 new GZIPOutputStream(byteStream);
 OutputStreamWriter tempOut =
 new OutputStreamWriter(zipOut);

 // Compress original output and put it into byte array.
 tempOut.write(responseWrapper.toString());

 // Gzip streams must be explicitly closed.
 tempOut.close();

 // Send compressed result to client.
 OutputStream realOut = res.getOutputStream();
 byteStream.writeTo(realOut);
 }
 }

 /** Store the FilterConfig object in case subclasses
 * want it.
 */

Listing 5.21 CompressionFilter.java (continued)

5.11 Example: A Compression Filter 249

 public void init(FilterConfig config)
 throws ServletException {
 this.config = config;
 }

 protected FilterConfig getFilterConfig() {
 return(config);
 }

 public void destroy() {}

private boolean isGzipSupported(HttpServletRequest req) {
 String browserEncodings =
 req.getHeader("Accept-Encoding");
 return((browserEncodings != null) &&
 (browserEncodings.indexOf("gzip") != -1));
 }
}

Listing 5.22 LongServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet with long output. Used to test
 * the effect of the compression filter of Chapter 9.
 */
public class LongServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Long Page";

Listing 5.21 CompressionFilter.java (continued)

Chapter 5 ■ Servlet and JSP Filters250

 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n");
 String line = "Blah, blah, blah, blah, blah. " +
 "Yadda, yadda, yadda, yadda.";
 for(int i=0; i<10000; i++) {
 out.println(line);
 }
 out.println("</BODY></HTML>");
 }
}

Listing 5.23 web.xml (Excerpt for compression filter)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the name "CompressionFilter" for
 coreservlets.filters.CompressionFilter. -->
 <filter>
 <filter-name>CompressionFilter</filter-name>
 <filter-class>
 coreservlets.filters.CompressionFilter
 </filter-class>
 </filter>
 <!-- Apply CompressionFilter to the servlet named
 "LongServlet". -->
 <filter-mapping>
 <filter-name>CompressionFilter</filter-name>
 <servlet-name>LongServlet</servlet-name>
 </filter-mapping>

<!-- Give a name to the servlet that generates long
 (but very exciting!) output. -->
 <servlet>
 <servlet-name>LongServlet</servlet-name>
 <servlet-class>coreservlets.LongServlet</servlet-class>
 </servlet>

Listing 5.22 LongServlet.java (continued)

5.12 Configuring Filters to Work with RequestDispatcher 251

5.12 Configuring Filters to Work
with RequestDispatcher

Version 2.3 of the servlet specification only allowed us to configure filters for
requests that came directly from the client. Filters did not apply to requests that
were made as a result of the forward or include methods of RequestDis-
patcher. Version 2.4 introduced a new deployment descriptor element, dis-
patcher, which allows us to configure filters to do just that.

The optional dispatcher element must be placed inside the filter-mapping
element after the url-pattern or servlet-name element. It can be assigned
one of the following values: REQUEST, FORWARD, INCLUDE, or ERROR. If you want to
apply the filter to different types of requests, you can do so by repeating the dis-
patcher element with a different value. Here is a simple example:

<!-- ... -->
<filter-mapping>

<filter-name>MyFilter</filter-name>
<url-pattern>/index.jsp</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

 <!-- Make /LongServlet invoke the servlet
 named LongServlet (i.e., coreservlets.LongServlet). -->
 <servlet-mapping>
 <servlet-name>LongServlet</servlet-name>
 <url-pattern>/LongServlet</url-pattern>
 </servlet-mapping>

<!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 5.23 web.xml (Excerpt for compression filter) (continued)

Chapter 5 ■ Servlet and JSP Filters252

Each value of the dispatcher element represents a different type of request.
The filter mapping will apply only to the types of requests specified. Details follow.

REQUEST
When the dispatcher element is assigned REQUEST, the filter mapping will
apply to any request coming directly from the client for the Web resources
matching the url-pattern or servlet-name element. If the resource
specified by the filter-mapping element is invoked using methods of
RequestDispatcher (i.e., forward or include), the filter mapping will
not apply and the associated filter will not be invoked. If the dispatcher ele-
ment is omitted, the server assumes the REQUEST setting and configures the
filter mapping accordingly. However, if any other setting is specified (e.g.,
INCLUDE), the filter mapping will not automatically apply to requests coming
directly from the client. In such situations, you must specify an additional dis-
patcher element with the value of REQUEST if you want to intercept direct
client requests as well.

Core Warning

If the dispatcher element is omitted, the REQUEST setting is assumed.
However, if any other setting is specified (e.g., INCLUDE), you must
specify the REQUEST setting for the filter mapping to apply to direct
client requests.

FORWARD
When the dispatcher element is assigned FORWARD, the filter mapping will
apply to any request made as a result of the RequestDispatcher.forward
method call to the Web resources matching the url-pattern or servlet-
name element.

INCLUDE
When the dispatcher element is assigned INCLUDE, the filter mapping will
apply to any request made as a result of the RequestDispatcher.include
method call to the Web resources matching the url-pattern or servlet-
name element.

ERROR
When the dispatcher element is assigned ERROR, the filter mapping will
apply to any request that was forwarded by the server to the Web resource
matching the url-pattern or servlet-name element using the error page
mechanism. For example, suppose the NotFound.jsp error page was designated
in web.xml to serve as an HTTP 404 custom error page as follows:

5.13 Example: Plugging a Potential Security Hole 253

<error-page>
<error-code>404</error-code>
<location>/NotFound.jsp</location>

</error-page>

Now, suppose we specify a filter-mapping element as follows:

<filter-mapping>
<filter-name>SomeFilter</filter-name>
<url-pattern>/NotFound.jsp</url-pattern>
<dispatcher>ERROR</dispatcher>

<filter-mapping>

The server will forward any request to a nonexisting resource to NotFound.jsp
as part of the error page mechanism. Because we specified SomeFilter to
intercept a request to NotFound.jsp when the request is being made as part of
the error page mechanism, SomeFilter will be invoked before the request
reaches NotFound.jsp. For more information on the error page mechanism, see
Section 2.9 (Designating Pages to Handle Errors).

5.13 Example: Plugging a Potential
Security Hole

In Chapter 3 (Declarative Security), when discussing declarative security, we men-
tioned that the security constraints only apply to clients that access the resources
directly. They do not apply to resources that are accessed through the MVC architec-
ture with a RequestDisplatcher or by the similar means of jsp:forward or
jsp:include. This asymmetry can catch developers off guard and allow them to
accidentally provide unrestricted access to resources that should be protected.

In this section, we configure a filter that ensures that even if one of the developers
makes a mistake, our secure resources remain safe from unauthorized access. Nor-
mally, you use the forward or the include mechanism because the servlet creates some
data that the JSP page will use. There is almost never a good reason to forward to a
regular HTML page. The real solution to this problem would therefore be to conduct
regular code reviews, weed out the “bad apple” developer, and either get rid of this
developer or arrange for a nice training class. However, that’s not always up you, so
you are stuck with implementing a safety net. To accomplish this functionality, we
implement the following capabilities.

1. A class that implements the Filter interface. This class is called
SecurityHolePlugFilter and is shown in Listing 5.24. The init
and destroy methods of this class do nothing and thus are provided
empty bodies.

Chapter 5 ■ Servlet and JSP Filters254

2. Filtering behavior in the doFilter method. This method forces
the client to directly invoke the requested resource by calling the
sendRedirect method. This setup will trigger the server’s security
mechanism, preventing unauthorized access to the protected resource.
Because this filter is configured to only intercept the RequestDis-
patcher and error page calls and we do not intend to let any such
requests pass, we never call the doFilter method of the FilterChain.

3. Configuration of security constraints, roles, and login mecha-
nism. Using the security-constraint element, we restrict
access to any resource inside the secure directory to users in the
executive role only. Using the security-role element, we
declare the executive role. Finally, using the login-config
element, we specify the type of user authentication as BASIC. See
Listing 5.26. For more details on defining security constraints, roles,
login mechanism, and associating usernames with passwords, see
Section 3.1 (Form-Based Authentication).

4. Registration with URLs that attempt to invoke a resource
inside the secure directory. First, the filter element associates
the name SecurityHolePlugFilter with the class coreserv-
lets.filters.SecurityHolePlugFilter. The filter-
mapping element uses the same url-pattern as the security-
onstraint element (i.e., /secure/*). We specify three dispatcher
elements—one with INCLUDE, one with FORWARD, and another with
ERROR values. Because security constraints already apply to direct
requests, we need to safeguard the secure directory from the other
types of requests. Our filter intercepts those types of requests and
essentially converts them into direct client requests, forcing the secu-
rity constraints to apply. See Listing 5.26.

5. A servlet to test the SecurityHolePlugFilter. We write
a simple servlet called SecurityHoleServlet, which uses the
RequestDispatcher.forward method in an attempt to access
job-openings.html inside the security directory, bypassing the security
constraints. We associate the name SecurityHole with the class core-
servlets.SecurityHoleServlet using the servlet element. We
assign /SecurityHole as the URL that will invoke the Security-
Hole servlet using the servlet-mapping element. See Listing 5.25.

6. Disablement of the invoker servlet. This operation is shown in
Section 5.2 (Example: A Reporting Filter) and is not repeated here.

Listing 5.24 and Listing 5.25 show the complete code for SecurityHolePlugFil-
ter.java and SecurityHoleServlet.java, respectively. Listing 5.26 shows the excerpt
from the deployment descriptor with all the configurations needed for this example.
If the SecurityHolePlugFilter is disabled, the SecurityHoleServlet is

5.13 Example: Plugging a Potential Security Hole 255

able to bypass the security constraint and access the protected resource (i.e.,
/secure/job-openings.html) without being authorized to do so. Because we are using
the RequestDispatcher.forward method, the originally requested URL is
shown in the browser’s address bar (Figure 5–10). If the SecurityHolePlugFil-
ter is enabled, it intercepts and converts the RequestDispatcher.forward call
into a direct client request using the response.sendRedirect method. This
invocation becomes no different than trying to directly invoke http://localhost/
filtersrus/secure/job-openings.html, therefore the server asks for username and
password to proceed (Figure 5–11). If the user successfully logs in with a username
belonging to the executive role, the screen captured in Figure 5–12 is shown.
Note that even though the originally requested URL was http://localhost/filtersrus/
SecurityHole, the filter forced the client to directly request the resource, thus chang-
ing the requested URL to http://localhost/filtersrus/secure/job-openings.html.
Listing 5.27 shows the complete code for job-openings.html.

Listing 5.24 SecurityHolePlugFilter.java

package coreservlets.filters;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** This filter converts any request that it is configured to
 * intercept into a direct client request. This prevents
 * developers from making a mistake by dynamically forwarding
 * the client to a secure resource, bypassing the
 * declarative security mechanism.
 */
public class SecurityHolePlugFilter implements Filter {
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws ServletException, IOException {
 HttpServletRequest req = (HttpServletRequest) request;
 HttpServletResponse res = (HttpServletResponse) response;
 res.sendRedirect(req.getRequestURI());
 }

 public void init(FilterConfig config)
 throws ServletException {
 }

 public void destroy() {}
}

Chapter 5 ■ Servlet and JSP Filters256

Listing 5.25 SecurityHoleServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** This servlet is used to demonstrate forwarding to a
 * protected resource.
 */
public class SecurityHoleServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 request.getRequestDispatcher("/secure/job-openings.html");
 dispatcher.forward(request, response);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 5.26 Excerpt from web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<!-- Only executives are allowed to view internal job
 descriptions -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>

Job openings, internal
</web-resource-name>
<url-pattern>/secure/*</url-pattern>

 </web-resource-collection>

5.13 Example: Plugging a Potential Security Hole 257

 <auth-constraint>
<role-name>executive</role-name>

 </auth-constraint>
 </security-constraint>
 <security-role>
 <role-name>executive</role-name>
 </security-role>
 <login-config>

<auth-method>BASIC</auth-method>
<realm-name>Internal</realm-name>

 </login-config>
 <!-- Servlet that erroneously forwards to a secure
 resource. -->
 <servlet>
 <servlet-name>SecurityHole</servlet-name>
 <servlet-class>
 coreservlets.SecurityHoleServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SecurityHole</servlet-name>

<url-pattern>/SecurityHole</url-pattern>
 </servlet-mapping>

<!-- Register the name "SecurityHolePlugFilter" for
 coreservlets.filters.SecurityHolePlugFilter. -->
 <filter>
 <filter-name>SecurityHolePlugFilter</filter-name>
 <filter-class>
 coreservlets.filters.SecurityHolePlugFilter
 </filter-class>
 </filter>
 <!-- Apply SecurityHolePlugFilter any resource
 inside the secure directory -->
 <filter-mapping>
 <filter-name>SecurityHolePlugFilter</filter-name>

<url-pattern>/secure/*</url-pattern>
 <!-- Only invoke this filter as a result of
 RequestDispatcher's forward/include methods or as a
 result of error page mechanism. -->

<dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>

...
</web-app>

Listing 5.26 Excerpt from web.xml (continued)

Chapter 5 ■ Servlet and JSP Filters258

Listing 5.27 job-openings.html located in the secure directory

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Job Openings at FiltersRUs</TITLE>
</HEAD>
<BODY>
<H1 ALIGN="CENTER">Job Openings at FiltersRUs</H1>
This page contains descriptions of positions within our company
that we are looking to fill. These descriptions are not to be
shared with the commoners, i.e., regular employees, under any
circumstances. Only executives are allowed to access this page.<P>
Position: Manager

Description: A person in charge of making crucial
decisions and providing his subordinates with the right tools to
do their jobs in a timely manner.

Salary: $50,000<P>
Position: Boss

Description: A person who knows very little about anyone's
job
or how to support it, but is good at looking important, parading
around the office, and especially prolonging meetings by listening
to
himself talk.

Salary: $300,000<P>
FiltersRUs Management
</BODY></HTML>

5.13 Example: Plugging a Potential Security Hole 259

Figure 5–10 If the SecurityHolePlugFilter is disabled, the SecurityHoleServlet
is able to bypass the security constraint and access the protected resource (i.e., /secure/
job-openings.html) without being authorized to do so. Because we are using the
RequestDispatcher.forward method, the originally requested URL is showing in the
browser’s address bar.

Figure 5–11 If the SecurityHolePlugFilter is enabled, it converts the
RequestDispatcher.forward call into a direct client request. This invocation becomes
no different than trying to directly invoke http://localhost/filtersrus/secure/
job-openings.html, therefore the server asks for username and password to proceed.

Chapter 5 ■ Servlet and JSP Filters260

Figure 5–12 Even though the originally requested URL was http://localhost/filtersrus/
SecurityHole, the filter forced the client to directly request the resource, thus changing the
requested URL to http://localhost/filtersrus/secure/job-openings.html. This screen is
shown if the user successfully logs in with a username belonging to the executive role.

5.14 The Complete Filter
Deployment Descriptor

The previous sections showed various excerpts of the web.xml file for filtersRus.com.
Listing 5.28 shows the file in its entirety.

5.14 The Complete Filter Deployment Descriptor 261

Listing 5.28
web.xml
(Complete version for filter examples)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Give a name to the Today's Special servlet so that filters
 can be applied to it. -->
 <servlet>
 <servlet-name>TodaysSpecial</servlet-name>
 <servlet-class>
 coreservlets.TodaysSpecialServlet
 </servlet-class>
 </servlet>
 <!-- Make /TodaysSpecial invoke the servlet
 named TodaysSpecial (i.e., coreservlets.TodaysSpecial).
 -->
 <servlet-mapping>
 <servlet-name>TodaysSpecial</servlet-name>
 <url-pattern>/TodaysSpecial</url-pattern>
 </servlet-mapping>
 <!-- Register the name "Reporter" for ReportFilter. -->
 <filter>
 <filter-name>Reporter</filter-name>
 <filter-class>
 coreservlets.filters.ReportFilter
 </filter-class>
 </filter>
 <!-- Apply the Reporter filter to home page. -->
 <filter-mapping>
 <filter-name>Reporter</filter-name>
 <url-pattern>/index.jsp</url-pattern>
 </filter-mapping>
 <!-- Also apply the Reporter filter to the servlet named
 "TodaysSpecial". -->
 <filter-mapping>
 <filter-name>Reporter</filter-name>
 <servlet-name>TodaysSpecial</servlet-name>
 </filter-mapping>
 <!-- Register the name "BannedAccessFilter" for
 coreservlets.filter.BannedAccessFilter.
 Supply an initialization parameter:
 bannedSites. -->

Chapter 5 ■ Servlet and JSP Filters262

 <filter>
 <filter-name>BannedAccessFilter</filter-name>
 <filter-class>
 coreservlets.filters.BannedAccessFilter
 </filter-class>
 <init-param>
 <param-name>bannedSites</param-name>
 <param-value>
 www.tbiq.com
 www.bettersite.com
 www.coreservlets.com
 </param-value>
 </init-param>
 </filter>
 <!-- Apply BannedAccessFilter to the servlet named
 "TodaysSpecial". -->
 <filter-mapping>
 <filter-name>BannedAccessFilter</filter-name>
 <servlet-name>TodaysSpecial</servlet-name>
 </filter-mapping>
 <!-- Give a name to the servlet that generates long
 (but very exciting!) output. -->
 <servlet>
 <servlet-name>LongServlet</servlet-name>
 <servlet-class>coreservlets.LongServlet</servlet-class>
 </servlet>
 <!-- Make /LongServlet invoke the servlet
 named LongServlet (i.e., coreservlets.LongServlet). -->
 <servlet-mapping>
 <servlet-name>LongServlet</servlet-name>
 <url-pattern>/LongServlet</url-pattern>
 </servlet-mapping>
 <!-- Register the name "CompressionFilter" for
 coreservlets.filters.CompressionFilter. -->
 <filter>
 <filter-name>CompressionFilter</filter-name>
 <filter-class>
 coreservlets.filters.CompressionFilter
 </filter-class>
 </filter>
 <!-- Apply CompressionFilter to the servlet named
 "LongServlet". -->
 <filter-mapping>
 <filter-name>CompressionFilter</filter-name>
 <servlet-name>LongServlet</servlet-name>
 </filter-mapping>

Listing 5.28
web.xml
(Complete version for filter examples) (continued)

5.14 The Complete Filter Deployment Descriptor 263

 <!-- Register the name "Logger" for LogFilter. -->
 <filter>
 <filter-name>Logger</filter-name>
 <filter-class>
 coreservlets.filters.LogFilter
 </filter-class>
 </filter>
 <!-- Apply the Logger filter to all servlets and
 JSP pages. -->
 <filter-mapping>
 <filter-name>Logger</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <!-- Register the name "LateAccessFilter" for
 coreservlets.filter.LateAccessFilter.
 Supply two initialization parameters:
 startTime and endTime. -->
 <filter>
 <filter-name>LateAccessFilter</filter-name>
 <filter-class>
 coreservlets.filters.LateAccessFilter
 </filter-class>
 <init-param>
 <param-name>startTime</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>endTime</param-name>
 <param-value>10</param-value>
 </init-param>
 </filter>
 <!-- Apply LateAccessFilter to the home page. -->
 <filter-mapping>
 <filter-name>LateAccessFilter</filter-name>
 <url-pattern>/index.jsp</url-pattern>
 </filter-mapping>
 <!-- Register the name "ReplaceSiteNameFilter" for
 coreservlets.filters.ReplaceSiteNameFilter. -->
 <filter>
 <filter-name>ReplaceSiteNameFilter</filter-name>
 <filter-class>
 coreservlets.filters.ReplaceSiteNameFilter
 </filter-class>

Listing 5.28
web.xml
(Complete version for filter examples) (continued)

Chapter 5 ■ Servlet and JSP Filters264

 <init-param>
 <param-name>target</param-name>
 <param-value>filtersRus.com</param-value>
 </init-param>
 <init-param>
 <param-name>replacement</param-name>
 <param-value>weBefilters.com</param-value>
 </init-param>
 </filter>
 <!-- Apply ReplaceSiteNameFilter to page1.jsp and page2.html

pages in the plugSite directory -->
 <filter-mapping>
 <filter-name>ReplaceSiteNameFilter</filter-name>
 <url-pattern>/plugSite/page2.jsp</url-pattern>
 </filter-mapping>
 <!-- Only executives are allowed to view internal job
 descriptions -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>

Job openings, internal
</web-resource-name>

 <url-pattern>/secure/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>
 <security-role>
 <role-name>executive</role-name>
 </security-role>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Internal</realm-name>
 </login-config>
 <!-- Servlet that erroneously forwards to a secure
 resource. -->
 <servlet>
 <servlet-name>SecurityHole</servlet-name>
 <servlet-class>
 coreservlets.SecurityHoleServlet
 </servlet-class>
 </servlet>

Listing 5.28
web.xml
(Complete version for filter examples) (continued)

5.14 The Complete Filter Deployment Descriptor 265

 <servlet-mapping>
 <servlet-name>SecurityHole</servlet-name>
 <url-pattern>/SecurityHole</url-pattern>
 </servlet-mapping>
 <!-- Register the name "SecurityHolePlugFilter" for
 coreservlets.filters.SecurityHolePlugFilter. -->
 <filter>
 <filter-name>SecurityHolePlugFilter</filter-name>
 <filter-class>
 coreservlets.filters.SecurityHolePlugFilter
 </filter-class>
 </filter>
 <!-- Apply SecurityHolePlugFilter any resource
 inside the secure directory -->
 <filter-mapping>
 <filter-name>SecurityHolePlugFilter</filter-name>
 <url-pattern>/secure/*</url-pattern>
 <!-- Only invoke this filter as a result of
 RequestDispatcher's forward/include methods or as a
 result of error page mechanism. -->
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>ERROR</dispatcher>
 </filter-mapping>
 <!-- If URL gives a directory but no filename, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). Order of elements in web.xml matters.
 welcome-file-list needs to come after servlet but
 before error-page. -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 5.28
web.xml
(Complete version for filter examples) (continued)

THE APPLICATION
EVENTS FRAMEWORK

Topics in This Chapter

• Understanding the general event-handling strategy

• Monitoring servlet context initialization and shutdown

• Setting application-wide values

• Detecting changes in attributes of the servlet context

• Packaging listeners in JSP tag libraries

• Recognizing creation and destruction of HTTP sessions

• Analyzing overall session usage

• Watching for changes in session attributes

• Tracking purchases at an e-commerce site

• Identifying request creation and destruction

• Tracking server request load

• Monitoring request attribute addition and change

• Using multiple cooperating listeners

267

ChapterChapter 6

Developers have many tools at their disposal for handling the life cycle of individual
servlets or JSP pages. The servlet init method (Section 2.6) fires when a servlet is
first instantiated. JSP pages use the nearly identical jspInit method (Section 2.6).
Both methods can use initialization parameters that are specified with the
init-param subelement of the web.xml servlet element (Section 2.6). Requests
are handled with service and _jspService, and destruction is handled with
destroy and jspDestroy.

This is all fine for individual resources, but what if you want to respond to major
events in the life cycle of the Web application itself? What if you want to create appli-
cation-wide connection pools, locate resources, or set up shared network connec-
tions? For example, suppose you want to record the e-mail address of the support
group at your company, an address that will be used by many different servlets and
JSP pages. Sure, you can use the following to store the information:

context.setAttribute("supportAddress", "balmer@microsoft.com");

Better yet, you could use the web.xml context-param element (Section 2.6) to
designate the address, then read it with the getInitParameter method of
ServletContext. Fine. But which servlet or JSP page should perform this task?
Or you could read the address from a database. Fine. But which servlet or JSP page
should establish the database connection? There is no good answer to this question;
you don’t know which resources will be accessed first, so the code that performs

Chapter 6 ■ The Application Events Framework268

these tasks would have to be repeated many different places. You want more global
control than any one servlet or JSP page can provide. That’s where application
life-cycle event listeners come in.

There are eight kinds of event listeners that respond to Web application life-cycle
events.

• Servlet context listeners. These listeners are notified when the
servlet context (i.e., the Web application) is initialized and destroyed.

• Servlet context attribute listeners. These listeners are notified
when attributes are added to, removed from, or replaced in the servlet
context.

• Session listeners. These listeners are notified when session objects
are created, invalidated, or timed out.

• Session attribute listeners. These listeners are notified when
attributes are added to, removed from, or replaced in any session.

• Session migration listeners. These listeners are notified when the
session objects are serialized and deserialized by the container.
Usually, the serialization and deserialization of session objects occurs
when the container migrates the session objects from one machine to
another.

• Session object binding listeners. These listeners are notified when
the implementing object is added or removed from the session object.

• Request listeners. These listeners are notified when request objects
are initialized and destroyed.

• Request attribute listeners. These listeners are notified when
attributes are added to, removed from, or replaced in any request.

Using these listeners involves six basic steps. We’ll give a general outline here,
then provide listener-specific details in the following sections.

1. Implement the appropriate interface. Use ServletContext-
Listener, ServletContextAttributeListener,
HttpSessionListener, HttpSessionAttributeListener,
HttpSessionActivationListener, HttpSessionBinding-
Listener, ServletRequestListener, or ServletRequest-
AttributeListener. The interfaces without the Http prefix in
their name reside in the javax.servlet package and the interfaces
with the Http prefix reside in the javax.servlet.http package.

2. Implement the methods needed to respond to the events of
interest. Provide empty bodies for the other methods in the inter-
face. For example, the ServletContextListener interface
defines two methods: contextInitialized (the Web application
was just loaded and the servlet context was initialized) and

269

contextDestroyed (the Web application is being shut down and
the servlet context is about to be destroyed). If you wanted to define
an application-wide servlet context entry, you could provide a real
implementation for contextInitialized and an empty body for
contextDestroyed.

3. Obtain access to the important Web application objects. There
are nine important objects that you are likely to use in your event-
handling methods: the servlet context, the name of the servlet context
attribute that changed, the value of the servlet context attribute that
changed, the session object, the name of the session attribute that
changed, the value of the session attribute that changed, the request
object, the name of the request attribute that changed, and the value
of the request attribute that changed.

4. Use these objects. This process is application specific, but there are
some common themes. For example, with the servlet context, you are
most likely to read initialization parameters (getInitParameter),
store data for later access (setAttribute), and read previously
stored data (getAttribute).

5. Declare the listener. You do this with the listener and
listener-class elements of the general Web application deploy-
ment descriptor (web.xml) or of a TLD file.

6. Provide any needed initialization parameters. Servlet context lis-
teners commonly read context initialization parameters to use as the
basis of data that is made available to all servlets and JSP pages. You
use the context-param web.xml element to provide the names and
values of these initialization parameters.

Note, however, that the ServletRequestListener and the Servlet-
RequestAttributeListener are new additions to version 2.4 of the servlet spec-
ification. If your Web application needs to support servers compliant only with
version 2.3, you cannot use the aforementioned listeners.

Core Warning

ServletRequestListener and ServletRequestAttribute-
Listener fail in servers that are compliant only with version 2.3 of the
servlet specification.

Chapter 6 ■ The Application Events Framework

Chapter 6 ■ The Application Events Framework270

6.1 Monitoring Creation and
Destruction of the Servlet Context

The ServletContextListener class responds to the initialization and destruc-
tion of the servlet context. These events correspond to the creation and shutdown of
the Web application itself. The ServletContextListener is most commonly
used to set up application-wide resources like database connection pools and to read
the initial values of application-wide data that will be used by multiple servlets and
JSP pages. Using the listener involves the following six steps.

1. Implement the ServletContextListener interface. This inter-
face is in the javax.servlet package.

2. Implement contextInitialized and contextDestroyed.
The first of these (contextInitialized) is triggered when the
Web application is first loaded and the servlet context is created. The
two most common tasks performed by this method are creating appli-
cation-wide data (often by reading context initialization parameters)
and storing that data in an easily accessible location (often in attributes
of the servlet context). The second method (contextDestroyed) is
triggered when the Web application is being shut down and the servlet
context is about to be destroyed. The most common task performed by
this method is the releasing of resources. For example, context-
Destroyed can be used to close database connections associated
with a now-obsolete connection pool. However, because the servlet
context will be destroyed (and garbage collected if the server itself
continues to execute), there is no need to use contextDestroyed to
remove normal objects from servlet context attributes.

3. Obtain a reference to the servlet context. The context-
Initialized and contextDestroyed methods each take a
ServletContextEvent as an argument. The ServletContextEvent
class has a getServletContext method that returns the servlet context.

4. Use the servlet context. You read initialization parameters with
getInitParameter, store data with setAttribute, and make log
file entries with log.

5. Declare the listener. Use the listener and listener-class
elements to simply list the fully qualified name of the listener class, as
shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

6.2 Example: Initializing Commonly Used Data 271

For now, assume that this declaration goes in the web.xml file. How-
ever, keep in mind that if you package listeners with tag libraries, you
can use the identical declaration within the TLD file of the tag library.
This technique is discussed in Section 6.5 (Packaging Listeners with
Tag Libraries).

6. Provide any needed initialization parameters. Once you have a
reference to the servlet context (see Step 3), you can use the get-
InitParameter method to read context initialization parameters as
the basis of data that will be made available to all servlets and JSP
pages. You use the context-param web.xml element to provide the
names and values of these initialization parameters, as follows:

<context-param>
<param-name>name</param-name>
<param-value>value</param-value>

</context-param>

6.2 Example: Initializing
Commonly Used Data

Suppose that you are developing a Web site for a dot-com company that is a hot com-
modity. So hot, in fact, that it is constantly being bought out by larger companies. As
a result, the company name keeps changing. Rather than changing zillions of sepa-
rate servlets and JSP pages each time you change the company name, you could read
the company name when the Web application is loaded, store the value in the servlet
context, and design all your servlets and JSP pages to read the name from this loca-
tion. To prevent confusion among customers, the site can also prominently display
the former company name, initializing and using it in a manner similar to the current
company name.

The following steps summarize a listener that accomplishes this task.

1. Implement the ServletContextListener interface. Listing 6.1
shows a class (InitialCompanyNameListener) that implements
this interface.

2. Implement contextInitialized and contextDestroyed.
The InitialCompanyNameListener class uses context-
Initialized to read the current and former company names and
store them in the servlet context. Because the contextDestroyed
method is not needed, an empty body is supplied.

Chapter 6 ■ The Application Events Framework272

3. Obtain a reference to the servlet context. The context-
Initialized method calls getServletContext on the
ServletContextEvent argument and stores the result in the
context local variable.

4. Use the servlet context. The listener needs to store the company-
Name and formerCompanyName initialization parameters in a
globally accessible location, so it calls getInitParameter on the
context variable, checks for missing values, and uses setAttribute
to store the result in the servlet context.

5. Declare the listener. The listener is declared in the deployment
descriptor with the listener and listener-class elements, as
shown here:

<listener>
<listener-class>

coreservlets.listeners.InitialCompanyNameListener
</listener-class>

</listener>

The web.xml file is shown in Listing 6.2.
6. Provide any needed initialization parameters. The company-

Name and formerCompanyName init parameters are defined in
web.xml (Listing 6.2) as follows:

<context-param>
<param-name>companyName</param-name>
<param-value>not-dot-com.com</param-value>

</context-param>
<context-param>

<param-name>formerCompanyName</param-name>
<param-value>hot-dot-com.com</param-value>

</context-param>

Listings 6.3 and 6.4 present two JSP pages that use the predefined JSP EL vari-
able applicationScope (i.e., the servlet context) to access the companyName and
formerCompanyName attributes. Figures 6–1 and 6–2 show the results.

Listing 6.1 InitialCompanyNameListener.java

package coreservlets.listeners;

import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

6.2 Example: Initializing Commonly Used Data 273

/** Listener that looks up the name of the company when
 * the Web application is first loaded. Stores this
 * name in the companyName servlet context attribute.
 * Various servlets and JSP pages will extract it
 * from that location.
 */

public class InitialCompanyNameListener
 implements ServletContextListener {
 private static final String DEFAULT_NAME =
 "MISSING-COMPANY-NAME";

 /** Looks up the companyName and formerCompanyName
 * init parameters and puts them into the servlet context.
 */

public void contextInitialized(ServletContextEvent event) {
 ServletContext context = event.getServletContext();
 setInitialAttribute(context,
 "companyName",
 DEFAULT_NAME);
 setInitialAttribute(context,
 "formerCompanyName",
 "");
 }

public void contextDestroyed(ServletContextEvent event) {}

 // Looks for a servlet context init parameter with a
 // given name. If it finds it, it puts the value into
 // a servlet context attribute with the same name. If
 // the init parameter is missing, it puts a default
 // value into the servlet context attribute.
 private void setInitialAttribute(ServletContext context,
 String initParamName,
 String defaultValue) {

 String initialValue =
 context.getInitParameter(initParamName);
 if (initialValue != null) {
 context.setAttribute(initParamName, initialValue);
 } else {
 context.setAttribute(initParamName, defaultValue);
 }
 }
}

Listing 6.1 InitialCompanyNameListener.java (continued)

Chapter 6 ■ The Application Events Framework274

Listing 6.2 web.xml (Excerpt for initial company name listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Because the company name changes so frequently,
 supply it as a servlet context parameter instead
 of embedding it into lots of different servlets and
 JSP pages. The InitialCompanyNameListener will
 read this value and store it in the servlet context. -->

<context-param>
 <param-name>companyName</param-name>
 <param-value>not-dot-com.com</param-value>
 </context-param>

 <!-- Also store the previous company name. -->
<context-param>

 <param-name>formerCompanyName</param-name>
 <param-value>hot-dot-com.com</param-value>
 </context-param>

 <!-- Register the listener that sets up the
 initial company name. -->

<listener>
 <listener-class>
 coreservlets.listeners.InitialCompanyNameListener
 </listener-class>
 </listener>

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). Order of elements in web.xml matters.
 welcome-file-list needs to come after servlet but
 before error-page.
 -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <!-- ... -->

</web-app>

6.2 Example: Initializing Commonly Used Data 275

Listing 6.3 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>${applicationScope.companyName}</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 ${applicationScope.companyName}

 (formerly ${applicationScope.formerCompanyName})
</TABLE>
<P>
Welcome to the home page of
${applicationScope.companyName} (formerly
${applicationScope.formerCompanyName})
<P>
${applicationScope.companyName} is a high-flying,
fast-growing, big-potential company. A perfect choice for your
retirement portfolio!
<P>
Click here for more information.
</BODY>
</HTML>

Listing 6.4 company-info.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>${applicationScope.companyName}</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

Chapter 6 ■ The Application Events Framework276

Figure 6–1 Home page for the company with the frequently changing name.

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 ${applicationScope.companyName}

 (formerly ${applicationScope.formerCompanyName})
</TABLE>
<P>
Learn more about ${applicationScope.companyName}
(formerly ${applicationScope.formerCompanyName})

 ${applicationScope.companyName}
 products
 ${applicationScope.companyName}
 services
 ${applicationScope.companyName}
 history
 investing in

${applicationScope.companyName}
 contacting

${applicationScope.companyName}

</BODY>
</HTML>

Listing 6.4 company-info.jsp (continued)

6.3 Detecting Changes in Servlet Context Attributes 277

Figure 6–2 Informational page for the company with the frequently changing name.

6.3 Detecting Changes in Servlet
Context Attributes

When the Web application is loaded, you can set up initial values of resources and
store references to them in the servlet context, but what if you want to be notified
whenever these resources change? For example, what if the value of resource B
depends on the value of resource A? If resource A changes, you need to automati-
cally update the value of resource B. Handling this situation is the job of servlet con-
text attribute listeners. Using them involves the following steps.

1. Implement the ServletContextAttributeListener
interface. This interface is in the javax.servlet package.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The attributeAdded method is triggered
when a new attribute is added to the servlet context. When a new
value is assigned to an existing servlet context attribute, attribute-
Added is triggered with the new value and attributeReplaced is
triggered with the old value (i.e., the value being replaced). The
attributeRemoved method is triggered when a servlet context
attribute is removed altogether.

Chapter 6 ■ The Application Events Framework278

3. Obtain references to the attribute name, attribute value, and
servlet context. Each of the three ServletContextAttribute-
Listener methods takes a ServletContextAttributeEvent as
an argument. The ServletContextAttributeEvent class has
three useful methods: getName (the name of the attribute that was
changed), getValue (the value of the changed attribute—the new
value for attributeAdded and the previous value for attribute-
Replaced and attributeRemoved), and getServletContext
(the servlet context).

4. Use the objects. You normally compare the attribute name to a
stored name to see if it is the one you are monitoring. The attribute
value is used in an application-specific manner. The servlet context is
usually used to read previously stored attributes (getAttribute),
store new or changed attributes (setAttribute), and make entries
in the log file (log).

5. Declare the listener. Use the listener and listener-class
elements to simply list the fully qualified name of the listener class, as
shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

The following section gives an example.

6.4 Example: Monitoring Changes to
Commonly Used Data

Section 6.2 (Example: Initializing Commonly Used Data) shows how to read the cur-
rent and former company names when the Web application is loaded and how to
make use of those values in JSP pages. But what if you want to change the company
name during the execution of the Web application? It is reasonable to expect a rou-
tine that makes this change to modify the companyName servlet context attribute.
After all, in this context, that’s what it means to change the company name. It is not
reasonable, however, to expect that routine to modify (or even know about) the
formerCompanyName attribute. However, if the company name changes, the
former company name must change as well. Enter servlet context attribute listeners!

The following steps summarize a listener that automatically updates the former
company name whenever the current company name changes.

6.4 Example: Monitoring Changes to Commonly Used Data 279

1. Implement the ServletContextAttributeListener inter-
face. Listing 6.5 shows a class (ChangedCompanyNameListener)
that implements this interface.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The attributeReplaced method is used to
detect modification to context attributes. Empty bodies are supplied
for the attributeAdded and attributeRemoved methods.

3. Obtain references to the attribute name, attribute value, and
servlet context. The attributeReplaced method calls getName
and getValue on its ServletContextAttributeEvent argu-
ment to obtain the name and value of the modified attribute. The
method also calls getServletContext on its argument to get a
reference to the servlet context.

4. Use the objects. The attribute name is compared to "company-
Name". If the name matches, the attribute value is used as the new
value of the formerCompanyName servlet context attribute.

5. Declare the listener. The listener is declared in the deployment
descriptor with the listener and listener-class elements, as
shown here:

<listener>
<listener-class>

coreservlets.listeners.ChangedCompanyNameListener
</listener-class>

</listener>

The web.xml file is shown in Listing 6.6.

Listing 6.7 presents a JSP page containing a form that displays the current com-
pany name, lets users enter a new name, and submits the new name to the Change-
CompanyName servlet (Listing 6.8). Because changing the company name is a
privileged operation, access to the form and the servlet should be restricted.

So, the form is placed in the admin directory and the servlet and servlet-
mapping elements are used to assign the servlet a URL that also starts with /admin.
See Section 2.4 (Assigning Names and Custom URLs) for details on servlet and
servlet-mapping; see the deployment descriptor in Listing 6.6 for the usage in
this example.

Next, the security-constraint element is used to stipulate that only
authenticated users in the ceo role can access the admin directory. The ceo role is
declared using the security-role element. Then, the login-config element
is used to specify that form-based authentication be used, with login.jsp (Listing
6.9) collecting usernames and passwords and login-error.jsp (Listing 6.10) display-
ing messages to users who failed authentication. Listing 6.11 shows a Tomcat-spe-
cific password file used to designate a user who is in the ceo role. See Section 3.1

Chapter 6 ■ The Application Events Framework280

(Form-Based Authentication) for details on these types of security settings; see the
deployment descriptor in Listing 6.6 for the usage in this example.

Figures 6–3 through 6–8 show the results of logging in, changing the company
name, and revisiting the pages that display the current and former company names.

Listing 6.5 ChangedCompanyNameListener.java

package coreservlets.listeners;

import javax.servlet.ServletContext;
import javax.servlet.ServletContextAttributeEvent;
import javax.servlet.ServletContextAttributeListener;

/** Listener that monitors changes in the company
 * name (which is stored in the companyName attribute
 * of the servlet context).
 */
public class ChangedCompanyNameListener
 implements ServletContextAttributeListener {

 /** When the companyName attribute changes, put
 * the previous value into the formerCompanyName
 * attribute.
 */

public void attributeReplaced
 (ServletContextAttributeEvent event) {
 if (event.getName().equals("companyName")) {
 String oldName = (String)event.getValue();
 ServletContext context = event.getServletContext();
 context.setAttribute("formerCompanyName", oldName);
 }
 }

public void attributeAdded
 (ServletContextAttributeEvent event) {}

public void attributeRemoved
 (ServletContextAttributeEvent event) {}
}

6.4 Example: Monitoring Changes to Commonly Used Data 281

Listing 6.6
web.xml (Excerpt for changed company name
listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

 <!-- Because the company name changes so frequently,
 supply it as a servlet context parameter instead
 of embedding it into lots of different servlets and
 JSP pages. The InitialCompanyNameListener will
 read this value and store it in the servlet context. -->
 <context-param>
 <param-name>companyName</param-name>
 <param-value>not-dot-com.com</param-value>
 </context-param>

 <!-- Also store the previous company name. -->
 <context-param>
 <param-name>formerCompanyName</param-name>
 <param-value>hot-dot-com.com</param-value>
 </context-param>

<!-- Register the listener that sets up the
 initial company name. -->
 <listener>
 <listener-class>
 coreservlets.listeners.InitialCompanyNameListener
 </listener-class>
 </listener>
 <!-- Register the listener that monitors changes to
 the company name.
 -->

Chapter 6 ■ The Application Events Framework282

<listener>
 <listener-class>
 coreservlets.listeners.ChangedCompanyNameListener
 </listener-class>
 </listener>

 <!-- Assign the name ChangeCompanyName to
 coreservlets.ChangeCompanyName. -->
 <servlet>
 <servlet-name>ChangeCompanyName</servlet-name>
 <servlet-class>coreservlets.ChangeCompanyName</servlet-class>
 </servlet>
 <!-- Assign the URL /admin/ChangeCompanyName to the
 servlet that is named ChangeCompanyName. -->
 <servlet-mapping>
 <servlet-name>ChangeCompanyName</servlet-name>
 <url-pattern>/admin/ChangeCompanyName</url-pattern>
 </servlet-mapping>

 <!-- Protect everything within the "admin" directory.
 Direct client access to this directory requires
 authentication. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ceo</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Declare security roles. -->
 <security-role>
 <role-name>ceo</role-name>
 </security-role>

 <!-- Tell the server to use form-based authentication. -->
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/admin/login.jsp</form-login-page>
 <form-error-page>/admin/login-error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

Listing 6.6
web.xml (Excerpt for changed company name
listener) (continued)

6.4 Example: Monitoring Changes to Commonly Used Data 283

Listing 6.7 change-company-name.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Changing Company Name</TITLE>
<LINK REL=STYLESHEET
 HREF="../events-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Changing Company Name
</TABLE>
<P>

<FORM ACTION="ChangeCompanyName">
New name:
<INPUT TYPE="TEXT" NAME="newName" VALUE="${companyName}">
<P>
<CENTER><INPUT TYPE="SUBMIT" VALUE="Submit Change"></CENTER>
</FORM>
</BODY></HTML>

Listing 6.8 ChangeCompanyName.java

package coreservlets;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/** Servlet that changes the company name. The web.xml
 * file specifies that only authenticated users in the
 * ceo role can access the servlet. A servlet context
 * attribute listener updates the former company name
 * when this servlet (or any other program) changes
 * the current company name.
 */

Chapter 6 ■ The Application Events Framework284

public class ChangeCompanyName extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 boolean isNameChanged = false;
 String newName = request.getParameter("newName");
 if ((newName != null) && (!newName.equals(""))) {
 isNameChanged = true;
 getServletContext().setAttribute("companyName",
 newName);
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Company Name";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2 ALIGN=\"CENTER\">" + title + "</H2>");
 if (isNameChanged) {
 out.println("Company name changed to " + newName + ".");
 } else {
 out.println("Company name not changed.");
 }
 out.println("</BODY></HTML>");
 }
}

Listing 6.8 ChangeCompanyName.java (continued)

6.4 Example: Monitoring Changes to Commonly Used Data 285

Listing 6.9 login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Log In</TITLE>
<LINK REL=STYLESHEET
 HREF="../events-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Log In</TABLE>
<P>
<H3>Sorry, you must log in before accessing this resource.</H3>
<FORM ACTION="j_security_check" METHOD="POST">
<TABLE>
<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">
<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">
<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">
</TABLE>
</FORM>

</BODY>
</HTML>

Listing 6.10 login-error.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Begone!</TITLE>
<LINK REL=STYLESHEET
 HREF="../events-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Begone!</TABLE>

<H3>Begone, ye unauthorized peon.</H3>

</BODY>
</HTML>

Chapter 6 ■ The Application Events Framework286

Figure 6–3 Only users who are in the ceo role can access the form that changes the
company name.

Figure 6–4 A failed login attempt.

Listing 6.11 tomcat-users.xml (Excerpt for events examples)

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <!-- ... -->

<role rolename="ceo"/>
 <user username="kennethLay" password="enron" roles="ceo"/>
</tomcat-users>

6.4 Example: Monitoring Changes to Commonly Used Data 287

Figure 6–5 The form to change the company name when the page is accessed by an
authenticated user who is in the ceo role.

Figure 6–6 The name change confirmation page.

Figure 6–7 When the company name changes, the company home page (Listing 6.3) is
automatically updated.

Chapter 6 ■ The Application Events Framework288

Figure 6–8 When the company name changes, the company information page (Listing
6.4) is also updated automatically.

6.5 Packaging Listeners
with Tag Libraries

JSP tag libraries, discussed in Chapter 7 (Tag Libraries: The Basics), provide a great
way of encapsulating content that will be accessed by multiple JSP pages. But what if
that content depends on life-cycle event listeners? If the listener and lis-
tener-class elements of web.xml were the only option for declaring listeners, tag
library maintenance would be much more difficult. Normally, the user of a tag library
can deploy it by simply dropping a JAR file in WEB-INF/lib and putting a TLD file in
WEB-INF. Users of the tag libraries need no knowledge of the individual classes within
the library, only of the tags that the library defines. However, if the tag libraries used
listeners, users of the libraries would need to discover the name of the listener classes
and make web.xml entries for each one. This would be significantly more work.

Fortunately, the JSP specification version 1.2 and above lets you put the listener
declarations in the TLD file instead of in the deployment descriptor. But, wait!
Event listeners need to run when the Web application is first loaded, not just the
first time a JSP page that uses a custom library is accessed. How does the system
handle this? When the Web application is loaded, the system automatically
searches WEB-INF and its subdirectories for files with .tld extensions and uses all

6.5 Packaging Listeners with Tag Libraries 289

listener declarations that it finds. Because starting with version 1.2 of the JSP spec-
ification it is required that you place all your TLD files inside WEB-INF, all listeners
declared in TLD files will be found.

Version 2.0 of the JSP specification switched to using XML Schema instead of
Document Type Definition (DTD) for validation of TLD files. Besides replacing
the DOCTYPE with the new XML Schema-compliant declaration, the order of some
of the elements has changed as well. Listing 6.12 shows a template for a TLD file
in JSP 2.0.

Listing 6.12 JSP 2.0 Tag Library Descriptor (Template)

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <description>
 Tag library documentation.
 </description>
 <tlib-version>1.0</tlib-version>
 <short-name>some name</short-name>
 <uri>some uri</uri>

 <listener>
 <listener-class>somePackage.someListener</listener-class>
 </listener>

 <tag>
 <description>Tag documentation</description>
 <name>agName</name>
 <tag-class>somePackage.someTagHandler</tag-class>
 <body-content>...</body-content>
 </tag>
</taglib>

Chapter 6 ■ The Application Events Framework290

6.6 Example: Packaging the
Company Name Listeners

Listings 6.13 and 6.14 show custom tags that print out the current and former company
names, respectively. The first tag simply prints the current company name. The second
tag uses a fullDescription attribute to decide whether to simply print the former
company name (e.g., some-company.com) or the company name inside parentheses
(e.g., (formerly some-company.com)). Listing 6.15 shows the TLD file for this
library: The listener elements of Sections 6.2 and 6.4 are moved out of the web.xml

file and into the TLD file, which is then placed in the WEB-INF directory.
Listings 6.16 and 6.17 show the company home page (see Listing 6.3) and company

information page (see Listing 6.4) reworked with the new custom tags. The augmented
InitialCompanyNameListener is shown in Listing 6.18. Figures 6–9 and 6–10
show the results—identical to those shown earlier in Figures 6–1 and 6–2.

Listing 6.13 CompanyNameTag.java

package coreservlets.tags;
import java.io.*;
import javax.servlet.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import coreservlets.listeners.*;

/**
 * The InitialCompanyNameListener class has static methods that
 * permit access to the current and former company names. But,
using
 * these methods in JSP requires explicit Java code, and creating
 * beans that provided the information would have yielded a
 * cumbersome result. So, we simply move the code into a custom
tag.
 */
public class CompanyNameTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 PageContext pageContext = (PageContext) getJspContext();
 ServletContext context = pageContext.getServletContext();
 String companyName =
 InitialCompanyNameListener.getCompanyName(context);
 JspWriter out = pageContext.getOut();
 out.print(companyName);
 }
}

6.6 Example: Packaging the Company Name Listeners 291

Listing 6.14 FormerCompanyNameTag.java

package coreservlets.tags;
import java.io.*;
import javax.servlet.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import coreservlets.listeners.*;

/** The InitialCompanyNameListener class has static
 * methods that permit access to the current and former
 * company names. But, using these methods in JSP requires
 * explicit Java code, and creating beans that provided
 * the information would have yielded a cumbersome result.
 * So, we simply move the code into a custom tag.
 */

public class FormerCompanyNameTag extends SimpleTagSupport {
 private boolean useFullDescription = false;
 public void doTag() throws JspException, IOException {
 PageContext pageContext = (PageContext) getJspContext();
 ServletContext context = pageContext.getServletContext();
 String formerCompanyName =
 InitialCompanyNameListener.getFormerCompanyName(context);
 JspWriter out = pageContext.getOut();
 if (useFullDescription) {
 String formerCompanyDescription = "";
 if (!formerCompanyName.equals("")) {
 formerCompanyDescription =
 "(formerly " + formerCompanyName + ")";
 }
 out.print(formerCompanyDescription);
 } else {
 out.print(formerCompanyName);
 }
 }

 /** If the user supplies a fullDescription attribute
 * with the value "true" (upper, lower, or mixed case),
 * set the useFullDescription instance variable to true.
 * Otherwise, leave it false.
 */
 public void setFullDescription(String flag) {
 if (flag.equalsIgnoreCase("true")) {
 useFullDescription = true;
 }
 }
}

Chapter 6 ■ The Application Events Framework292

Listing 6.15 company-name-taglib.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <description>
 A tag library to print out the ever-changing current
 and former company names (which are monitored by event
 listeners). From Core Servlets and JavaServer Pages Volume 2,
 http://volume2.coreservlets.com/.
 </description>
 <tlib-version>1.0</tlib-version>
 <short-name>company-name-tags</short-name>
 <uri>http://coreservlets.com/listeners</uri>
 <!-- Register the listener that sets up the
 initial company name. -->

<listener>
 <listener-class>
 coreservlets.listeners.InitialCompanyNameListener
 </listener-class>
 </listener>
 <!-- Register the listener that monitors changes to
 the company name.
 -->

<listener>
 <listener-class>
 coreservlets.listeners.ChangedCompanyNameListener
 </listener-class>
 </listener>
 <!-- Define a tag that prints out the current name. -->

<tag>
 <description>The current company name</description>
 <name>companyName</name>
 <tag-class>coreservlets.tags.CompanyNameTag</tag-class>
 <body-content>empty</body-content>
 </tag>
 <!-- Define a tag that prints out the previous name. -->

<tag>
 <description>The previous company name</description>
 <name>formerCompanyName</name>
 <tag-class>coreservlets.tags.FormerCompanyNameTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>fullDescription</name>
 <required>false</required>
 </attribute>
 </tag>
</taglib>

6.6 Example: Packaging the Company Name Listeners 293

Listing 6.16 index2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<%@ taglib uri="http://coreservlets.com/listeners" prefix="csajsp"
%>
<TITLE><csajsp:companyName/></TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 <csajsp:companyName/>

 <csajsp:formerCompanyName fullDescription="true"/>
</TABLE>
<P>
Welcome to the home page of <csajsp:companyName/>
<csajsp:formerCompanyName fullDescription="true"/>
<P>
<csajsp:companyName/> is a high-flying, fast-growing,
big-potential company. A perfect choice for your
retirement portfolio!
<P>
Click here for more information.
</BODY></HTML>

Listing 6.17 company-info2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<%@ taglib uri="http://coreservlets.com/listeners"
 prefix="csajsp" %>
<TITLE><csajsp:companyName/></TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 <csajsp:companyName/>

 <csajsp:formerCompanyName fullDescription="true"/>

Chapter 6 ■ The Application Events Framework294

</TABLE>
<P>
Learn more about <csajsp:companyName/>
<csajsp:formerCompanyName fullDescription="true"/>

 <csajsp:companyName/> products
 <csajsp:companyName/> services
 <csajsp:companyName/> history
 investing in <csajsp:companyName/>
 contacting <csajsp:companyName/>

</BODY></HTML>

Listing 6.18 InitialCompanyNameListener.java

package coreservlets.listeners;
import javax.servlet.*;

/** Listener that looks up the name of the company when
 * the Web application is first loaded. Stores this
 * name in the companyName servlet context attribute.
 * Various servlets and JSP pages will extract it
 * from that location.
 * <P>
 * Also looks up and stores the former company name and
 * stores it in the formerCompanyName attribute.
 */

public class InitialCompanyNameListener
 implements ServletContextListener {
 private static final String DEFAULT_NAME =
 "MISSING-COMPANY-NAME";

 /** Looks up the companyName and formerCompanyName
 * init parameters and puts them into the servlet context.
 */
 public void contextInitialized(ServletContextEvent event) {
 ServletContext context = event.getServletContext();
 setInitialAttribute(context,
 "companyName",
 DEFAULT_NAME);
 setInitialAttribute(context,
 "formerCompanyName",
 "");
 }

Listing 6.17 company-info2.jsp (continued)

6.6 Example: Packaging the Company Name Listeners 295

 public void contextDestroyed(ServletContextEvent event) {}
 /** Looks for a servlet context init parameter with a
 * given name. If it finds it, it puts the value into
 * a servlet context attribute with the same name. If
 * the init parameter is missing, it puts a default
 * value into the servlet context attribute.
 */
 private void setInitialAttribute(ServletContext context,
 String initParamName,
 String defaultValue) {
 String initialValue =
 context.getInitParameter(initParamName);
 if (initialValue != null) {
 context.setAttribute(initParamName, initialValue);
 } else {
 context.setAttribute(initParamName, defaultValue);
 }
 }

 /** Static method that returns the servlet context
 * attribute named "companyName" if it is available.
 * Returns a default value if the attribute is
 * unavailable.
 */

public static String getCompanyName(ServletContext context) {
 String name =
 (String)context.getAttribute("companyName");
 if (name == null) {
 name = DEFAULT_NAME;
 }
 return(name);
 }

 /** Static method that returns the servlet context
 * attribute named "formerCompanyName" if it is available.
 * Returns an empty string if the attribute is
 * unavailable.
 */

public static String getFormerCompanyName
 (ServletContext context) {
 String name =
 (String)context.getAttribute("formerCompanyName");
 if (name == null) {
 name = "";
 }
 return(name);
 }
}

Listing 6.18 InitialCompanyNameListener.java (continued)

Chapter 6 ■ The Application Events Framework296

Figure 6–9 Reworking the company home page to use custom tags results in an
identical appearance (compare Figure 6–1).

Figure 6–10 Reworking the company information page to use custom tags results in an
identical appearance (compare Figure 6–2).

6.7 Recognizing Session Creation and Destruction 297

6.7 Recognizing Session Creation
and Destruction

Classes that implement the ServletContextListener and ServletContext-
AttributeListener interfaces respond to creation, destruction, and changes in
the servlet context, which is shared by all servlets and JSP pages in the Web applica-
tion. But, with session tracking (Chapter 9 of Volume 1), data is stored in per-user
HttpSession objects, not in the servlet context. What if you want to monitor
changes to this user-specific data? That’s the job of the HttpSessionListener
and HttpSessionAttributeListener interfaces. This section discusses Http-
SessionListener, the listener that is notified when a session is created or
destroyed (either deliberately with invalidate or by timing out). Section 6.9
(Watching for Changes in Session Attributes) discusses HttpSessionAttribute-
Listener, the listener that is notified when session attributes are added, replaced,
or removed.

Using HttpSessionListener involves the following steps.

1. Implement the HttpSessionListener interface. This interface
is in the javax.servlet.http package.

2. Implement sessionCreated and sessionDestroyed. The first
of these (sessionCreated) is triggered when a new session is cre-
ated. The second method (sessionDestroyed) is triggered when a
session is destroyed. This destruction could be due to an explicit call to
the invalidate method or because the elapsed time since the last
client access exceeds the session timeout.

3. Obtain a reference to the session and possibly to the servlet
context. Each of the two HttpSessionListener methods takes an
HttpSessionEvent as an argument. The HttpSessionEvent
class has a getSession method that provides access to the session
object. You almost always want this reference; you occasionally also
want a reference to the servlet context. If so, first obtain the session
object and then call getServletContext on it.

4. Use the objects. Surprisingly, one of the only methods you usually
call on the session object is the setAttribute method. You do this
in sessionCreated if you want to guarantee that all sessions have a
certain attribute. Wait! What about getAttribute? You don’t use it.
In sessionCreated, there is nothing in the session yet, so get-
Attribute is pointless. In addition, all attributes are removed before
sessionDestroyed is called, so calling getAttribute is also
pointless there. If you want to clean up attributes that are left in ses-
sions that time out, you use the attributeRemoved method of

Chapter 6 ■ The Application Events Framework298

HttpSessionAttributeListener (Section 6.9). Consequently,
sessionDestroyed is mostly reserved for listeners that are simply
keeping track of the number of sessions in use.

5. Declare the listener. In the web.xml or TLD file, use the
listener and listener-class elements to simply list the fully
qualified name of the listener class, as shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

6.8 Example: A Listener That
Counts Sessions

Session tracking can significantly increase the server’s memory load. For example, if a
site that uses session tracking has 1,000 unique visitors per hour and the server uses a
two-hour session timeout, the system will have approximately 2,000 sessions in mem-
ory at any one time. Reducing the timeout to one hour would cut the session memory
requirements in half but would risk having active sessions prematurely time out. You
need to track typical usage before you can decide on the appropriate solution.

So, you need a listener that will keep track of how many sessions are created, how
many are destroyed, and how many are in memory at any one time. Assuming that
you have no explicit calls to invalidate, the session destructions correspond to
expired timeouts.

The following steps summarize a listener that accomplishes this task.

1. Implement the HttpSessionListener interface. Listing 6.19
shows a class (SessionCounter) that implements this interface.

2. Implement sessionCreated and sessionDestroyed. The first
of these (sessionCreated) increments two counters: total-
SessionCount and currentSessionCount. If the current count is
greater than the previous maximum count, the method also increments
the maxSessionCount variable. The second method (session-
Destroyed) decrements the currentSessionCount variable.

3. Obtain and use the servlet context. In this application, no specific
use is made of the session object. The only thing that matters is the
fact that a session was created or destroyed, not any details about the
session itself. However, the session counts have to be placed in a loca-
tion that is easily accessible to servlets and JSP pages that will display

6.8 Example: A Listener That Counts Sessions 299

the counts. So, the first time sessionCreated is called, it obtains
the session object, calls getServletContext on it, and then calls
setAttribute to store the listener object in the servlet context.

4. Declare the listener. Listing 6.20 shows the web.xml file. It declares
the listener with the listener and listener-class elements, as
follows:

<listener>
<listener-class>

coreservlets.listeners.SessionCounter
</listener-class>

</listener>

Listing 6.21 shows a JSP page that displays the session counts. Figure 6–11 shows
a typical result.

To test session creation and timeout, we made three temporary changes.
First, we disabled cookies in the browser. Because the servers can either use cook-

ies, which we disabled, or URL rewriting for session tracking, and we did not dynam-
ically rewrite the source URL for each frame, this had the result of making each
request be a new session. See the following subsection for information on disabling
cookies in Firefox and Internet Explorer.

Second, we created an HTML page (Listing 6.22, Figure 6–12) that used frames
with four rows and four columns to request the same JSP page (Listing 6.23) 16
times. This JSP page uses the colorUtil.randomColor method (Listing 6.24) to
choose a random color as a background color for the page. In an environment that
has cookies disabled, a request for the framed page results in 16 new sessions being
created on the server (recall that JSP pages perform session tracking automatically
unless the session attribute of the page directive is set to false—see Section
12.4 of Volume 1).

Third, we chose an extremely low session timeout: two minutes. This saved us
from waiting for hours to test the session-counting listener. Changing the default ses-
sion timeout is discussed in Section 2.11 (Controlling Session Timeouts), but it sim-
ply amounts to creating a session-config entry in web.xml, as follows:

<session-config>
<session-timeout>2</session-timeout>

</session-config>

Chapter 6 ■ The Application Events Framework300

Listing 6.19 SessionCounter.java

package coreservlets.listeners;

import javax.servlet.*;
import javax.servlet.http.*;

/** Listener that keeps track of the number of sessions
 * that the Web application is currently using and has
 * ever used in its life cycle.
 */
public class SessionCounter implements HttpSessionListener {
 private int totalSessionCount = 0;
 private int currentSessionCount = 0;
 private int maxSessionCount = 0;
 private ServletContext context = null;

public void sessionCreated(HttpSessionEvent event) {
 totalSessionCount++;
 currentSessionCount++;
 if (currentSessionCount > maxSessionCount) {
 maxSessionCount = currentSessionCount;
 }
 if (context == null) {
 storeInServletContext(event);
 }
 }

public void sessionDestroyed(HttpSessionEvent event) {
 currentSessionCount--;
 }

 /** The total number of sessions created. */
 public int getTotalSessionCount() {
 return(totalSessionCount);
 }

 /** The number of sessions currently in memory. */
 public int getCurrentSessionCount() {
 return(currentSessionCount);
 }

 /** The largest number of sessions ever in memory
 * at any one time.
 */

6.8 Example: A Listener That Counts Sessions 301

 public int getMaxSessionCount() {
 return(maxSessionCount);
 }

 /** Register self in the servlet context so that
 * servlets and JSP pages can access the session counts.
 */
 private void storeInServletContext(HttpSessionEvent event) {
 HttpSession session = event.getSession();
 context = session.getServletContext();
 context.setAttribute("sessionCounter", this);
 }
}

Listing 6.20 web.xml (Excerpt for session counting listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the session counting event listener. -->
 <listener>
 <listener-class>
 coreservlets.listeners.SessionCounter
 </listener-class>
 </listener>
 <!-- Set the default session timeout to two minutes. -->
 <session-config>
 <session-timeout>2</session-timeout>
 </session-config>
</web-app>

Listing 6.19 SessionCounter.java (continued)

Chapter 6 ■ The Application Events Framework302

Figure 6–11 The SessionCounter listener keeps track of the sessions used in the Web
application.

Listing 6.21 session-counts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Session Info</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Session Info</TABLE>
<P>

Total number of sessions in the life of this
 Web application: ${sessionCounter.totalSessionCount}.
Number of sessions currently in memory:
 ${sessionCounter.currentSessionCount}.
Maximum number of sessions that have ever been in
 memory at any one time: ${sessionCounter.maxSessionCount}.

</BODY></HTML>

6.8 Example: A Listener That Counts Sessions 303

Listing 6.22 make-sessions.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
 <TITLE>Session Testing...</TITLE>
</HEAD>
<FRAMESET ROWS="*,*,*,*" COLS="*,*,*,*">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <FRAME SRC="test.jsp">
 <NOFRAMES><BODY>
 This example requires a frame-capable browser.
 </BODY></NOFRAMES>
</FRAMESET>
</HTML>

Listing 6.23 test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- The purpose of this page is to force the system
 to create a session. -->
<HTML>
<HEAD><TITLE>Test</TITLE></HEAD>
<%@ page import="coreservlets.*" %>
<BODY BGCOLOR="<%= ColorUtils.randomColor() %>">
</BODY></HTML>

Chapter 6 ■ The Application Events Framework304

Figure 6–12 Session management was tested with a frame-based page that was invoked
after cookies were disabled, so each request resulted in 16 different sessions.

Listing 6.24 ColorUtils.java

package coreservlets;

/** Small utility to generate random HTML color names. */
public class ColorUtils {
 /** The official HTML color names. */
 private static String[] htmlColorNames =
 { "AQUA", "BLACK", "BLUE", "FUCHSIA", "GRAY", "GREEN",
 "LIME", "MAROON", "NAVY", "OLIVE", "PURPLE", "RED",
 "SILVER", "TEAL", "WHITE", "YELLOW" };

public static String randomColor() {
 int index = randomInt(htmlColorNames.length);
 return(htmlColorNames[index]);
 }

 /** Returns a random number from 0 to n-1 inclusive. */
 private static int randomInt(int n) {
 return((int)(Math.random() * n));
 }
}

6.8 Example: A Listener That Counts Sessions 305

Disabling Cookies
Figures 6–13 through 6–14 summarize the approach to disabling cookies in Firefox
1.5, and Internet Explorer 6.0. As discussed in the previous subsection, temporarily
disabling cookies is useful for testing session usage.

Figure 6–13 To disable
cookies in Firefox 1.5, choose
the Tools menu, then
Options, then Privacy, then
the Cookies tab. Make sure
the “Allow sites to set
Cookies” checkbox is not
checked. Reset the browser
after you are done testing; our
preferred setting is to also
check “for the originating site
only.”

Figure 6–14 To disable cookies in
Internet Explorer 6.0, choose the
Tools menu, then Internet Options,
then Privacy, then move the slider
all the way up to the “Block All
Cookies” setting. Be aware that some
versions of Internet Explorer ignore
custom cookie settings when the
host is localhost, so you should use
the loopback IP address 127.0.01
instead.

Chapter 6 ■ The Application Events Framework306

6.9 Watching for Changes
in Session Attributes

So HttpSessionListener lets you detect when a session is created or destroyed.
But, because session attributes can’t be placed into the session before its creation and
are removed before its destruction, this listener does not provide appropriate hooks
to monitor the life of the session attributes. That’s the job of the HttpSession-
AttributeListener interface. It gets notified when an object is placed into the
session scope for the first time, replaced by another object, or removed from the ses-
sion scope altogether. Use of this interface involves the following steps.

1. Implement the HttpSessionAttributeListener interface.
This interface is in the javax.servlet.http package.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The attributeAdded method is triggered
when a new attribute is added to a session. When a new value is
assigned to an existing session attribute, attributeAdded is triggered
with the new value and attributeReplaced is triggered with the old
value (i.e., the value being replaced). The attributeRemoved
method is triggered when a session attribute is removed altogether.

3. Obtain references to the attribute name, attribute value,
session, and servlet context. Each of the three HttpSession-
AttributeListener methods takes an HttpSessionBinding-
Event as an argument. The HttpSessionBindingEvent class has
three useful methods: getName (the name of the attribute that was
changed), getValue (the value of the changed attribute—the new
value for attributeAdded and the previous value for attribute-
Replaced and attributeRemoved), and getSession (the
HttpSession object). If you also want access to the servlet context,
first obtain the session and then call getServletContext on it.

4. Use the objects. The attribute name is usually compared to a stored
name to see if it is the one you are monitoring. The attribute value is
used in an application-specific manner. The session is usually used to
read previously stored attributes (getAttribute) or to store new or
changed attributes (setAttribute).

5. Declare the listener. In the web.xml or TLD file, use the
listener and listener-class elements to simply list the fully
qualified name of the listener class, as shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

6.10 Example: Monitoring Yacht Orders 307

6.10 Example: Monitoring
Yacht Orders

Suppose you want to track buying patterns for a specific item (a yacht, in this case).
Of course, you could try to find all servlets and JSP pages that process orders and
change each one to record yacht purchases. That’s an awful lot of work for what
sounds like a simple request, though, and pretty hard to maintain, anyhow.

A much better option is to create a session attribute listener that monitors the
attributes corresponding to order reservations or purchases and that records the
information in the log file for later perusal by the sales manager.

The following steps summarize a listener that accomplishes this task.

1. Implement the HttpSessionAttributeListener interface.
Listing 6.25 shows a class (YachtWatcher) that implements this
interface.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The first of these (attributeAdded) is used
to log the fact that a yacht was reserved (tentative) or purchased (per-
manent). The other two methods are used to print retractions of order
reservations (but not purchases—all sales are final).

3. Obtain references to the attribute name, attribute value, ses-
sion, and servlet context. Each of the three methods calls getName
and getValue on its HttpSessionBindingEvent argument to
obtain the name and value of the modified attribute. The methods also
call getServletContext on the session object (obtained with
getSession) to get a reference to the servlet context.

4. Use the objects. The attribute name is compared to "ordered-
Item" (attribute addition, replacement, and removal) and
"purchasedItem" (attribute addition only). If the name matches,
then the attribute value is compared to "yacht". If that comparison
also succeeds, then the log method of the servlet context is called.

5. Declare the listener. Listing 6.26 shows the web.xml file. It declares
the listener with the listener and listener-class elements, as
shown here:

<listener>
<listener-class>

coreservlets.listeners.YachtWatcher
</listener-class>

</listener>

Listings 6.27 and 6.28 show a servlet that handles orders and an HTML form that
sends it data, respectively. Figures 6–15 through 6–18 show the results. Listing 6.29
shows a portion of the resultant log file.

Chapter 6 ■ The Application Events Framework308

Listing 6.25 YachtWatcher.java

package coreservlets.listeners;

import javax.servlet.*;
import javax.servlet.http.*;

/** Listener that keeps track of yacht purchases
 * by monitoring the orderedItem and purchasedItem
 * session attributes.
 */
public class YachtWatcher
 implements HttpSessionAttributeListener {
 private String orderAttributeName = "orderedItem";
 private String purchaseAttributeName = "purchasedItem";
 private String itemName = "yacht";

 /** Checks for initial ordering and final purchase of
 * yacht. Records "Customer ordered a yacht" if the
 * orderedItem attribute matches "yacht".
 * Records "Customer finalized purchase of a yacht" if the
 * purchasedItem attribute matches "yacht".
 */

public void attributeAdded(HttpSessionBindingEvent event) {
 checkAttribute(event, orderAttributeName, itemName,
 " ordered a ");
 checkAttribute(event, purchaseAttributeName, itemName,
 " finalized purchase of a ");
 }

 /** Checks for order cancellation: was an order for "yacht"
 * cancelled? Records "Customer cancelled an order for
 * a yacht" if the orderedItem attribute matches "yacht".
 */

public void attributeRemoved(HttpSessionBindingEvent event) {
 checkAttribute(event, orderAttributeName, itemName,
 " cancelled an order for a ");
 }

 /** Checks for item replacement: was "yacht" replaced
 * by some other item? Records "Customer changed to a new
 * item instead of a yacht" if the orderedItem attribute
 * matches "yacht".
 */

public void attributeReplaced(HttpSessionBindingEvent event) {
 checkAttribute(event, orderAttributeName, itemName,
 " changed to a new item instead of a ");
 }

6.10 Example: Monitoring Yacht Orders 309

 private void checkAttribute(HttpSessionBindingEvent event,
 String orderAttributeName,
 String keyItemName,
 String message) {
 String currentAttributeName = event.getName();
 String currentItemName = (String)event.getValue();
 if (currentAttributeName.equals(orderAttributeName) &&
 currentItemName.equals(keyItemName)) {
 ServletContext context =
 event.getSession().getServletContext();
 context.log("Customer" + message + keyItemName + ".");
 }
 }
}

Listing 6.26 web.xml (Excerpt for yacht-watching listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the yacht-watching event listener. -->

<listener>
 <listener-class>
 coreservlets.listeners.YachtWatcher
 </listener-class>
 </listener>
 <!-- Assign the name OrderHandlingServlet to
 coreservlets.OrderHandlingServlet. -->
 <servlet>
 <servlet-name>OrderHandlingServlet</servlet-name>
 <servlet-class>
 coreservlets.OrderHandlingServlet
 </servlet-class>
 </servlet>
 <!-- Assign the URL /HandleOrders to the
 servlet that is named OrderHandlingServlet. -->
 <servlet-mapping>
 <servlet-name>OrderHandlingServlet</servlet-name>
 <url-pattern>/HandleOrders</url-pattern>
 </servlet-mapping>
</web-app>

Listing 6.25 YachtWatcher.java (continued)

Chapter 6 ■ The Application Events Framework310

Listing 6.27 OrderHandlingServlet.java

package coreservlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that handles submissions from the order form.
 * If the user selects the "Reserve Order" button, the
 * selected item is put into the orderedItem attribute.
 * If the user selects the "Cancel Order" button, the
 * orderedItem attribute is deleted.
 * If the user selects the "Purchase Item" button, the
 * selected item is put into the purchasedItem attribute.
 */
public class OrderHandlingServlet extends HttpServlet {
 private String title, picture;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 HttpSession session = request.getSession(true);
 String itemName = request.getParameter("itemName");
 if ((itemName == null) || (itemName.equals(""))) {
 itemName = "MISSING ITEM";
 }
 String message;
 if (request.getParameter("order") != null) {
 session.setAttribute("orderedItem", itemName);
 message = "Thanks for ordering " + itemName + ".";
 } else if (request.getParameter("cancel") != null) {
 session.removeAttribute("orderedItem");
 message = "Thanks for nothing.";
 } else {
 session.setAttribute("purchasedItem", itemName);
 message = "Thanks for purchasing " + itemName + ".";
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + message + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" + "<H2 ALIGN=\"CENTER\">" +
 message + "</H2>\n" + "</BODY></HTML>");
 }
}

6.10 Example: Monitoring Yacht Orders 311

Listing 6.28 orders.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Orders</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Orders
</TABLE>
<P>
Choose a valuable item below.
<P>
Select "Reserve Order" to hold the order for 30 days. Due to
unprecedented demand, you can only reserve a single item:
selecting another item will replace the previous choice.
<P>
Select "Purchase Item" to finalize your purchase. After
finalizing a purchase, you can reserve a new item.
<FORM ACTION="HandleOrders">
<DL>
 <DT>Item:
 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="yacht">Yacht
 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="chalet">Chalet
 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="car">Lamborghini
 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="csajspVolI"
CHECKED>
 <I>Core Servlets and JavaServer Pages Volume I</I>
 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="csajspVolII">
 <I>Core Servlets and JavaServer Pages Volume II</I>
</DL>
<CENTER>
<INPUT TYPE="SUBMIT" NAME="order" VALUE="Reserve Order">
<INPUT TYPE="SUBMIT" NAME="cancel" VALUE="Cancel Order">
<INPUT TYPE="SUBMIT" NAME="purchase" VALUE="Purchase Item">
</CENTER>
</FORM>
</BODY></HTML>

Chapter 6 ■ The Application Events Framework312

Figure 6–15 The order form that sends data to the order handling servlet (Listing 6.27).
That servlet adds, replaces, and removes values in the orderedItem and
purchasedItem session attributes, which in turn triggers the yacht-watching listener
(Listing 6.25).

Figure 6–16 Result of reserving an order for a yacht. The yacht-watching listener makes
an entry in the log file (Listing 6.29) saying that a customer ordered a yacht.

6.10 Example: Monitoring Yacht Orders 313

Figure 6–17 Result of cancelling an order. If the user had previously reserved an order for
a yacht, the yacht-watching listener makes an entry in the log file (Listing 6.29) saying that
a customer replaced a yacht order with something else.

Figure 6–18 Result of purchasing a yacht. The yacht-watching listener makes an entry in
the log file (Listing 6.29) saying that a customer purchased a yacht.

Listing 6.29 Sample Log File Entries

Mar 27, 2006 8:29:07 PM
org.apache.catalina.core.ApplicationContext log
INFO: Customer ordered a yacht.
Mar 27, 2006 8:29:17 PM
org.apache.catalina.core.ApplicationContext log
INFO: Customer cancelled an order for a yacht.
Mar 27, 2006 8:29:30 PM
org.apache.catalina.core.ApplicationContext log
INFO: Customer ordered a yacht.
Mar 27, 2006 8:29:36 PM
org.apache.catalina.core.ApplicationContext log
INFO: Customer changed to a new item instead of a yacht.
Mar 27, 2006 8:29:52 PM
org.apache.catalina.core.ApplicationContext log
INFO: Customer finalized purchase of a yacht.

Chapter 6 ■ The Application Events Framework314

6.11 Identifying Servlet Request
Initialization and Destruction

We use ServletContextListener (see Section 6.1) and SessionListener
(see Section 6.7) to monitor creation and destruction of the ServletContext and
HttpSession, respectively. Version 2.4 of the servlet specification introduced a
new listener, ServletRequestListener, which allows us to detect creation and
destruction of each ServletRequest.

The steps that involve using ServletRequestListener are very similar to the
steps for using ServletContextListener and SessionListener.

1. Implement the ServletRequestListener interface. This inter-
face is located in the javax.servlet package.

2. Implement requestInitialized and requestDestroyed.
The first of these (requestInitialized) is triggered right before a
new ServletRequest is processed by a Web component (e.g., a
servlet or a filter). The second method (requestDestroyed) is trig-
gered when a ServletRequest object is about to go out of scope of
the processing Web component and become eligible for garbage
collection.

3. Obtain a reference to the request and possibly to the servlet
context and session. Each of the two ServletRequestListener
methods takes a ServletRequestEvent as an argument. The
ServletRequestEvent class has a getServletRequest method
that provides access to the request object. Note that the return type of
the getServletRequest method is ServletRequest, not
HttpServletRequest. So, to use the HTTP-related methods you
need to cast it down to HttpServletRequest. Once you get a ref-
erence to the HttpServletRequest, you can use it to obtain
HttpSession object. The ServletRequestEvent class also has a
getServletContext method that provides access to the Servlet-
Context.

4. Use the objects. Obviously, this is the part that is very specific to
what you are trying to accomplish. As with other similar listeners, it is
most likely that you would want to store some objects as attributes of
either ServletContext, HttpSession, or ServletRequest
using the setAttribute method. You can also use the get-
Attribute method to retrieve previously stored attributes from the
ServletContext and HttpSession objects. However, it would
usually be pointless to try to use the getAttribute method on the
ServletRequest in either requestInitialized or request-

6.12 Example: Calculating Server Request Load 315

Destroyed methods. The requestInitialized method is invoked
before any other Web component (e.g., servlet or JSP page), so no
attributes are available for retrieval yet. The requestDestroyed
method is called after all of the attributes are removed, so calling
getAttribute would be useless there as well. We say “usually”
because it is possible to declare multiple ServletRequestListener
classes. In such a case, the listener that gets invoked first can set
attributes on the ServletRequest and those attributes would be
available for retrieval by the other ServletRequestListener
classes.

5. Declare the listener. In the web.xml or TLD file, use the
listener and listener-class elements to simply list the fully
qualified name of the listener class, as shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

6.12 Example: Calculating Server
Request Load

In Section 6.8 (Example: A Listener That Counts Sessions) we count the number of
session objects that are active at the same time. This helps us understand the server’s
memory load. However, knowing the number of simultaneously active sessions is
only a part of the picture. Perhaps even more important is to know how many request
objects get created at the same time. Unlike the session objects that get created only
once per user session, the request objects get created every time the client (i.e., the
browser) requests a resource from the server. So, one user will create one session
object and could potentially create hundreds of request objects per hour. Besides
using up extra memory for each newly created request, object creation is also an
expensive operation as far as the CPU cycles are concerned. Therefore, it would be
beneficial to know the server load in terms of the ratio of requests per second. Per-
haps it’s high enough for you to consider upgrading your server hardware or adding
another server altogether, or perhaps it’s so low that you can afford to cohost another
Web application on the same machine without hurting the response time of either.

We accomplish this task by creating a listener that will keep track of when each
request was made. Later on (using a servlet), we can retrieve the recorded data and
calculate the request frequency.

The following steps summarize a listener that accomplishes this task.

Chapter 6 ■ The Application Events Framework316

1. Implement the ServletRequestListener interface. Listing
6.30 shows a class (RequestCounter.java) that implements this
interface.

2. Implement requestInitialized and requestDestroyed. The
requestInitialized method will be called before any other
resource within our Web application is invoked for every request made
by the client. We can insert our request counting code into this method.
However, note that this method is called for every client request, not
merely for every connection the client makes to the server, which is not
always the same thing. For example, if a JSP page contains a stylesheet
declaration, the browser will most likely keep the connection open for
both requests—one retrieving the HTML code of the page and another
retrieving the stylesheet file. Therefore, even though to the user of the
browser a page retrieval looks like one request, in actuality two requests
are made by the browser and therefore two separate request objects are
created. The requestDestroyed method is not used and therefore
its implementation is left empty.

3. Obtain a reference to the request and possibly to the servlet
context and session. Because we need to store our request records
where any user can retrieve the statistics at a later time, we need to
obtain a reference to the ServletContext. We accomplish this by
passing the ServletRequestEvent object to the helper method
called getRequestRecords and calling getServletContext
on it.

4. Use the objects. The helper getRequestRecords method is called
by another helper method called recordRecord from the request-
Initialized method. The getRequestRecords method retrieves
an ArrayList as an attribute with the key of requestRecords from
the ServletContext (or creates a new one if such an attribute
doesn’t already exist). The recordRecord method adds the current
system time in milliseconds as an item to the list. This approach allows
us to record the total number of requests (e.g., total number of items in
the list) together with the time the first request and the last request are
made (e.g., first item’s value in the list and last item’s value in the list).
Using this information we are able to calculate request frequency as a
number of requests per second.

We use the ProcessRequestStats servlet together with the
req-stats.jsp page to display the statistics we have gathered over time.
Listing 6.31 and Listing 6.32 show the code for ProcessRequest-
Stats.java and req-stats.jsp, respectively. The doGet method of the
ProcessRequestStats servlet retrieves the ServletContext
attribute with the key of requestRecords, which is the ArrayList
that contains the request records gathered over some time. We calculate

6.12 Example: Calculating Server Request Load 317

the request statistics (e.g., requests per seconds) and store them in the
RequestStatsBean (shown in Listing 6.33), storing the bean in the
request scope with the key of stats. We then use the Request-
Dispatcher to forward to req-stats.jsp for displaying the information.
The result is shown in Figure 6–19.

5. Declare the listener. Listing 6.34 shows the web.xml file. It declares
the listener with the listener and listener-class elements, as
well as the declaration and mapping of the ProcessRequestStats
servlet.

Listing 6.30 RequestCounter.java

package coreservlets.listeners;
import java.util.*;
import javax.servlet.*;

/** Listener that keeps track of the number of requests and
 * the time each request was made. This data is later used
 * to calculate request frequency per second.
 */
public class RequestCounter implements ServletRequestListener {
 private ArrayList<Long> requestRecords = null;
 private static boolean countingFinished = false;

public void
requestInitialized(ServletRequestEvent requestEvent) {

 if (countingFinished) {
 return;
 }
 recordRequest(requestEvent, System.currentTimeMillis());
 }

 private void recordRequest(ServletRequestEvent requestEvent,
 Long time) {
 // Retrieve request records and record time
 ArrayList<Long> records = getRequestRecords(requestEvent);
 records.add(time);
 }

 private ArrayList<Long>
 getRequestRecords(ServletRequestEvent requestEvent) {
 // Check if it's already cached
 if (this.requestRecords != null) {
 return this.requestRecords;
 }

Chapter 6 ■ The Application Events Framework318

 // Initialize requestRecords and store it in ServletContext
 ServletContext context = requestEvent.getServletContext();
 requestRecords = new ArrayList<Long>();
 context.setAttribute("requestRecords", requestRecords);
 return requestRecords;
 }
 /** Allow outside classes to stop collection of request
 * statistics.
 */
 public static void
 setCountingFinished(boolean countingFinished) {
 RequestCounter.countingFinished = countingFinished;
 }

public void
 requestDestroyed(ServletRequestEvent requestEvent) {}
}

Listing 6.31 ProcessRequestStats.java

package coreservlets;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that calculates request frequency as the number
 * of requests made per second and forwards those results
 * to a page that displays them.
 */
public class ProcessRequestStats extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // Retrieve requestRecords
 ServletContext context = this.getServletContext();
 ArrayList<Long> requestRecords =
 (ArrayList<Long>) context.getAttribute("requestRecords");
 long firstMillis = requestRecords.get(0);
 int totalRequests = requestRecords.size();
 long lastMillis = requestRecords.get(totalRequests - 1);
 // Calculate total seconds elapsed
 long totalSeconds = (lastMillis - firstMillis) / 1000;

Listing 6.30 RequestCounter.java (continued)

6.12 Example: Calculating Server Request Load 319

 // Calculate ration of requests per second
 double ratio = totalRequests / (double) totalSeconds;
 ratio = ((int)(ratio * 100) / (double) 100);
 // Populate RequestStats bean;
 // store it in the request scope and
 // forward it to stats page
 RequestStatsBean requestStats =
 new RequestStatsBean(totalSeconds, totalRequests, ratio);
 request.setAttribute("stats", requestStats);
 RequestDispatcher dispatcher =
 request.
 getRequestDispatcher("/WEB-INF/pages/req-stats.jsp");
 dispatcher.forward(request, response);
 }
}

Listing 6.32 req-stats.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Request Frequency Statistics</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">Request Frequency Statistics</TABLE>
<P>

Total number of requests in the life of this
 Web application: ${stats.totalRequests}.
Web application has been up for
 ${stats.totalSeconds} seconds.
This means that our request load is about
 ${stats.ratio} requests per second.

</BODY></HTML>

Listing 6.31 ProcessRequestStats.java (continued)

Chapter 6 ■ The Application Events Framework320

Listing 6.33 RequestStatsBean.java

package coreservlets;

/** Bean used to store the collected request frequency data.
 */
public class RequestStatsBean {
 private long totalSeconds;
 private int totalRequests;
 private double ratio;

 public RequestStatsBean() {}
public RequestStatsBean(long totalSeconds,

 int totalRequests,
 double ratio) {
 this.totalSeconds = totalSeconds;
 this.totalRequests = totalRequests;
 this.ratio = ratio;
 }
 public double getRatio() {
 return ratio;
 }
 public void setRatio(double ratio) {
 this.ratio = ratio;
 }
 public int getTotalRequests() {
 return totalRequests;
 }
 public void setTotalRequests(int totalRequests) {
 this.totalRequests = totalRequests;
 }
 public long getTotalSeconds() {
 return totalSeconds;
 }
 public void setTotalSeconds(long totalSeconds) {
 this.totalSeconds = totalSeconds;
 }
}

6.12 Example: Calculating Server Request Load 321

Figure 6–19 Sample request frequency result.

Listing 6.34 web.xml (Excerpt for RequestCounter listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the RequestCounter listener. -->

<listener>
 <listener-class>
 coreservlets.listeners.RequestCounter
 </listener-class>
 </listener>

 <!-- Declare ProcessRequestStats servlet -->
 <servlet>
 <servlet-name>ProcessRequestStats</servlet-name>
 <servlet-class>
 coreservlets.ProcessRequestStats
 </servlet-class>
 </servlet>
 <!-- Assign the URL /processStats to ProcessRequestStats
 servlet. -->
 <servlet-mapping>
 <servlet-name>ProcessRequestStats</servlet-name>
 <url-pattern>/processStats</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 6 ■ The Application Events Framework322

6.13 Watching Servlet Request for
Attribute Changes

The ServletContextAttributeListener monitors the life cycle of application
scope attributes and the HttpSessionAttributeListener monitors the life
cycle of session scope attributes. Likewise, version 2.4 of the servlet specification
introduced a listener that monitors the request scope attributes: Servlet-
RequestAttributeListener. The container notifies this listener when an object
is placed into the request scope for the first time, replaced by another object, or
removed from the request scope altogether. The use of the ServletRequest-
AttributeListener interface is almost identical to the use of its “sister” listener
interfaces: ServletContextAttributeListener and HttpSession-
AttributeListener. Details follow.

1. Implement the ServletRequestAttributeListener inter-
face. This interface is in the javax.servlet package.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The attributeAdded method is triggered
when a new attribute is added to a request. When a new value is
assigned to an existing request attribute, attributeAdded is trig-
gered with the new value and attributeReplaced is triggered with
the old value (i.e., the value being replaced). The attribute-
Removed method is triggered when a request attribute is removed
altogether.

3. Obtain references to the attribute name, attribute value,
request, and servlet context. Each of the three
ServletRequestAttributeListener methods takes a
ServletRequestAttributeEvent as an argument. The
ServletRequestAttributeEvent class has four useful methods:
getName (the name of the attribute that was changed), getValue
(the value of the changed attribute—the new value for attribute-
Added and the previous value for attributeReplaced and
attributeRemoved), getServletRequest, and getServlet-
Context.

4. Use the objects. The attribute name is usually compared to a stored
name to see if it is the one you are monitoring. The attribute value is
used in an application-specific manner. The request and servlet context
objects are usually used to read previously stored attributes (get-
Attribute) or to store new or changed attributes (setAttribute).

6.14 Example: Stopping Request Frequency Collection 323

5. Declare the listener. In the web.xml or TLD file, use the
listener and listener-class elements to simply list the fully
qualified name of the listener class, as shown here:

<listener>
<listener-class>somePackage.SomeListener</listener-class>

</listener>

6.14 Example: Stopping Request
Frequency Collection

In Section 6.12 (Example: Calculating Server Request Load), we use the Process-
RequestStats servlet (Listing 6.31) to display the request frequency statistics. We
do this by retrieving the raw collected data from the ServletContext, populating
the RequestStatsBean (Listing 6.33) with the calculated statistics, adding the
results bean to the request scope as an attribute with the key of stats, and dynami-
cally forwarding the request to the req-stats.jsp page (Listing 6.32). Let’s assume that
we want to stop collecting the data once anyone looks at the results. We can use our
newly acquired request attribute listener to notify us when an attribute with the key
of stats is added to the request scope and signal a stop to further request frequency
data collection. We signal the stop by calling the RequestCounter.setCount-
ingFinished method.

The following steps summarize this task.

1. Implement the ServletRequestAttributeListener inter-
face. Listing 6.35 shows a class (StopRequestCounter.java) that imple-
ments this interface.

2. Implement attributeAdded, attributeReplaced, and
attributeRemoved. The attributeAdded method is used to
watch for the newly added attribute with the key of stats. The
other two methods are not used and therefore are left with an empty
implementation.

3. Obtain references to the attribute name, attribute value,
request, and servlet context. We use the getName method of the
ServletRequestAttributeEvent to retrieve the name of the
attribute that was added to the request scope.

4. Use the objects. If the attribute retrieved in Step 3 is equal to stats,
we call RequestCounter.setCountingFinished(true) to
prevent further data collection.

Chapter 6 ■ The Application Events Framework324

5. Declare the listener. Listing 6.36 shows the web.xml file. It declares
the listener with the listener and listener-class elements.

Listing 6.35 StopRequestCounter.java

package coreservlets.listeners;
import javax.servlet.*;

/** Listener that looks for 'stats' as the added attribute
 * to the request scope. If such an attribute is added, it
 * signals RequestCounter to stop collecting request
 * frequency data.
 */
public class StopRequestCounter
 implements ServletRequestAttributeListener {
 /** If the attribute added to the request scope is "stats",
 * signal to the ServletRequestListener to stop recording
 * request statistics.
 */
public void attributeAdded(ServletRequestAttributeEvent event) {

 String attributeName = event.getName();
 if (attributeName.equals("stats")) {
 RequestCounter.setCountingFinished(true);
 }
 }

 public void attributeRemoved(ServletRequestAttributeEvent event)
 {}
 public void
 attributeReplaced(ServletRequestAttributeEvent event)
 {}
}

Listing 6.36
web.xml (Excerpt for StopRequestCounter
listener)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

6.15 Using Multiple Cooperating Listeners 325

6.15 Using Multiple Cooperating
Listeners

Now, the listeners discussed in this chapter are all well and good. There are plenty of
applications where one of them is useful. However, there are also plenty of applica-
tions where no single listener can, in isolation, accomplish the necessary tasks. Multi-
ple listeners need to work together.

For example, suppose that your yacht-watching listener was so successful that you
are asked to expand it. Rather than tracking buying patterns of a fixed item such as a
yacht, you should track orders for the current daily special to let management dis-
cover if their specials are effective. Accomplishing this task requires three listeners to

 <!-- Register the RequestCounter listener. -->
<listener>

 <listener-class>
 coreservlets.listeners.RequestCounter
 </listener-class>
 </listener>

<!-- Register the StopRequestCounter listener -->
 <listener>
 <listener-class>
 coreservlets.listeners.StopRequestCounter
 </listener-class>
 </listener>

 <!-- Declare ProcessRequestStats servlet -->
 <servlet>
 <servlet-name>ProcessRequestStats</servlet-name>
 <servlet-class>
 coreservlets.ProcessRequestStats
 </servlet-class>
 </servlet>
 <!-- Assign the URL /processStats to ProcessRequestStats
 servlet. -->
 <servlet-mapping>
 <servlet-name>ProcessRequestStats</servlet-name>
 <url-pattern>/processStats</url-pattern>
 </servlet-mapping>
</web-app>

Listing 6.36
web.xml (Excerpt for StopRequestCounter
listener) (continued)

Chapter 6 ■ The Application Events Framework326

cooperate: a ServletContextListener to set up application-wide information
about the session attributes that store daily specials, a ServletContext-
AttributeListener to monitor changes to the attributes that store the informa-
tion, and an HttpSessionAttributeListener to keep a running count of
orders for the daily special.

The three listeners are described in more detail in the following subsections.

Tracking Orders for the Daily Special
As the first step in creating an order-tracking system, you need a servlet context lis-
tener to read initialization parameters that specify which session attributes corre-
spond to orders and which items are the current daily specials. These values should
be stored in the servlet context so other resources can determine what the daily spe-
cials are. Listing 6.37 shows this listener.

Second, you need a session attribute listener to keep a running count of orders for
the daily special. The count will be incremented every time a designated attribute
name is added with any of the daily specials as its value. The count will be decre-
mented every time a designated attribute is replaced or removed and the previous
value is one of the daily specials. Listing 6.38 shows this listener.

Listing 6.39 shows the deployment descriptor that registers the two listeners and
sets up the servlet context initialization parameters that designate the names of
order-related session attributes and the names of the daily specials.

Listing 6.40 shows a JSP page that prints the current order count. Figures 6–20
through 6–22 show some typical results.

Listing 6.37 DailySpecialRegistrar.java

package coreservlets.listeners;

import java.util.*;
import javax.servlet.*;

/** Listener that records how to detect orders
 * of the daily special. It reads a list of attribute
 * names from an init parameter: these correspond to
 * session attributes that are used to record orders.
 * It also reads a list of item names: these correspond
 * to the names of the daily specials. Other listeners
 * will watch to see if any daily special names appear
 * as values of attributes that are hereby designated
 * to refer to orders.
 */

6.15 Using Multiple Cooperating Listeners 327

public class DailySpecialRegistrar
 implements ServletContextListener {

 /** When the Web application is loaded, record the
 * attribute names that correspond to orders and
 * the attribute values that are the daily specials.
 * Also set to zero the count of daily specials that have
 * been ordered.
 */

public void contextInitialized(ServletContextEvent event) {
 ServletContext context = event.getServletContext();
 addContextEntry(context, "order-attribute-names");
 addContextEntry(context, "daily-special-item-names");
 context.setAttribute("dailySpecialCount", new Integer(0));
 }

 public void contextDestroyed(ServletContextEvent event) {}

 /** Read the designated context initialization parameter,
 * put the values into an ArrayList, and store the
 * list in the ServletContext with an attribute name
 * that is identical to the initialization parameter name.
 */
 private void addContextEntry(ServletContext context,
 String initParamName) {
 ArrayList<String> paramValues = new ArrayList<String>();
 String attributeNames =
 context.getInitParameter(initParamName);
 if (attributeNames != null) {
 String[] params = attributeNames.split("\\s++");
 for (String value : params) {
 paramValues.add(value);
 }
 context.setAttribute(initParamName, paramValues);
 }
 }

 /** Returns a string containing the daily special
 * names. For insertion inside an HTML text area.
 */
 public static String dailySpecials(ServletContext context) {
 String attributeName = "daily-special-item-names";
 ArrayList itemNames =
 (ArrayList)context.getAttribute(attributeName);

Listing 6.37 DailySpecialRegistrar.java (continued)

Chapter 6 ■ The Application Events Framework328

 String itemString = "";
 for(int i=0; i<itemNames.size(); i++) {
 itemString = itemString + (String)itemNames.get(i) + "\n";
 }
 return(itemString);
 }

 /** Returns a UL list containing the daily special
 * names. For insertion within the body of a JSP page.
 */
 public static String specialsList(ServletContext context) {
 String attributeName = "daily-special-item-names";
 ArrayList itemNames =
 (ArrayList)context.getAttribute(attributeName);
 String itemString = "\n";
 for(int i=0; i<itemNames.size(); i++) {
 itemString = itemString + "" +
 (String)itemNames.get(i) + "\n";
 }
 itemString = itemString + "";
 return(itemString);
 }
}

Listing 6.38 DailySpecialWatcher.java

package coreservlets.listeners;

import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Listener that keeps track of orders of the
 * current daily special.
 */
public class DailySpecialWatcher
 implements HttpSessionAttributeListener {
 private static int dailySpecialCount = 0;

Listing 6.37 DailySpecialRegistrar.java (continued)

6.15 Using Multiple Cooperating Listeners 329

 /** If the name of the session attribute that was added
 * matches one of the stored order-attribute-names AND
 * the value of the attribute matches one of the
 * stored daily-special-item-names, then increment
 * the count of daily specials ordered.
 */

public void attributeAdded(HttpSessionBindingEvent event) {
 checkForSpecials(event, 1);
 }

 /** If the name of the session attribute that was removed
 * matches one of the stored order-attribute-names AND
 * the value of the attribute matches one of the
 * stored daily-special-item-names, then decrement
 * the count of daily specials ordered.
 */

public void attributeRemoved(HttpSessionBindingEvent event) {
 checkForSpecials(event, -1);
 }

 /** If the name of the session attribute that was replaced
 * matches one of the stored order-attribute-names AND
 * the value of the attribute matches one of the
 * stored daily-special-item-names, then increment
 * the count of daily specials ordered. Note that the
 * value here is the old value (the one being replaced);
 * the attributeAdded method will handle the new value
 * (the replacement).
 */

public void attributeReplaced(HttpSessionBindingEvent event) {
 checkForSpecials(event, -1);
 }

 /** Check whether the attribute that was just added or removed
 * matches one of the stored order-attribute-names AND
 * the value of the attribute matches one of the
 * stored daily-special-item-names. If so, add the delta
 * (+1 or -1) to the count of daily specials ordered.
 */
 private void checkForSpecials(HttpSessionBindingEvent event,
 int delta) {
 ServletContext context =
 event.getSession().getServletContext();
 ArrayList<String> attributeNames =
 getList(context, "order-attribute-names");

Listing 6.38 DailySpecialWatcher.java (continued)

Chapter 6 ■ The Application Events Framework330

 ArrayList<String> itemNames =
 getList(context, "daily-special-item-names");
 synchronized(attributeNames) {
 for(int i=0; i<attributeNames.size(); i++) {
 String attributeName = attributeNames.get(i);
 for(int j=0; j<itemNames.size(); j++) {
 String itemName = itemNames.get(j);
 if (attributeName.equals(event.getName()) &&
 itemName.equals((String)event.getValue())) {
 dailySpecialCount = dailySpecialCount + delta;
 }
 }
 }
 }
 context.setAttribute("dailySpecialCount",
 new Integer(dailySpecialCount));
 }

 /** Get either the order-attribute-names or
 * daily-special-item-names list.
 */
 private ArrayList<String> getList(ServletContext context,
 String attributeName) {
 ArrayList<String> list =
 (ArrayList)context.getAttribute(attributeName);
 return(list);
 }

 /** Reset the count of daily specials that have
 * been ordered. This operation is normally performed
 * only when the daily special changes.
 */
 public static void resetDailySpecialCount() {
 dailySpecialCount = 0;
 }
}

Listing 6.38 DailySpecialWatcher.java (continued)

6.15 Using Multiple Cooperating Listeners 331

Listing 6.39 web.xml (Excerpt for tracking daily special orders)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the listener that sets up the entries
 that will be used to monitor orders for the daily
 special. -->

<listener>
 <listener-class>
 coreservlets.listeners.DailySpecialRegistrar
 </listener-class>
 </listener>
 <!-- Register the listener that counts orders for the daily
 special. -->

<listener>
 <listener-class>
 coreservlets.listeners.DailySpecialWatcher
 </listener-class>
 </listener>
 <!-- Declare the names of the session attributes that
 are used to store items that customers are
 purchasing. The daily special listener will
 track changes to the values of these attributes. -->
 <context-param>
 <param-name>order-attribute-names</param-name>
 <param-value>
 orderedItem
 purchasedItem
 </param-value>
 </context-param>
 <!-- The item names of the current daily specials. -->
 <context-param>
 <param-name>daily-special-item-names</param-name>
 <param-value>
 chalet
 car
 </param-value>
 </context-param>
</web-app>

Chapter 6 ■ The Application Events Framework332

Figure 6–20 Initial result of track-daily-specials.jsp.

Listing 6.40 track-daily-specials.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Tracking Daily Special Orders</TITLE>
<LINK REL=STYLESHEET
 HREF="events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">Tracking Daily Special Orders
</TABLE>
<H2>Current Specials:</H2>
<%@ page import="coreservlets.listeners.*" %>
<%= DailySpecialRegistrar.specialsList(application) %>
<H2>Number of Orders:
${applicationScope.dailySpecialCount}
</H2>
</CENTER>
</BODY></HTML>

6.15 Using Multiple Cooperating Listeners 333

Figure 6–21 Ordering the daily special.

Figure 6–22 Result of track-daily-specials.jsp after several clients placed orders.

Chapter 6 ■ The Application Events Framework334

Resetting the Daily Special Order Count
The two listeners shown in the previous subsection are sufficient if you restart the
server every time you change the daily specials.

However, if you change the daily specials while the server is running, you need a
servlet context attribute listener to detect changes in the attribute that stores the
names of the daily specials. In particular, when the daily specials change, you need to
reset the running count of orders for the specials. Listing 6.41 shows this listener.

Listing 6.42 shows a JSP page that displays the current daily specials in a text area.
It lets the user change the values and send them to a servlet (Listing 6.43) that
records the changes in the servlet context. The JSP page is in the admin directory
and the servlet is assigned a URL beginning with /admin (see the web.xml file in
Listing 6.44), so the security restrictions discussed in Chapter 3 (Declarative Secu-
rity) apply.

When an authorized user changes the names of the daily specials, the order count
is reset. Figures 6–23 through 6–27 show some representative results.

Listing 6.41 ChangedDailySpecialListener.java

package coreservlets.listeners;

import javax.servlet.*;

/** Listener that monitors changes to the names
 * of the daily specials (which are stored in
 * the daily-special-item-names attribute of
 * the servlet context). If the names change, the
 * listener resets the running count of the number
 * of daily specials being ordered.
 */
public class ChangedDailySpecialListener
 implements ServletContextAttributeListener {

 /** When the daily specials change, reset the
 * order counts.
 */

public void attributeReplaced
 (ServletContextAttributeEvent event) {
 if (event.getName().equals("daily-special-item-names")) {
 ServletContext context = event.getServletContext();
 context.setAttribute("dailySpecialCount",
 new Integer(0));
 DailySpecialWatcher.resetDailySpecialCount();
 }
 }

6.15 Using Multiple Cooperating Listeners 335

 public void attributeAdded
 (ServletContextAttributeEvent event) {}

 public void attributeRemoved
 (ServletContextAttributeEvent event) {}
}

Listing 6.42 change-daily-specials.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Changing Daily Specials</TITLE>
<LINK REL=STYLESHEET
 HREF="../events-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">Changing Daily Specials
</TABLE>
<P>
<FORM ACTION="ChangeDailySpecial">
New specials:

<%@ page import="coreservlets.listeners.*" %>
<TEXTAREA NAME="newSpecials" ROWS=4 COLS=30>
<%= DailySpecialRegistrar.dailySpecials(application) %>
</TEXTAREA>
<P>
<INPUT TYPE="SUBMIT" VALUE="Submit Change">
</FORM>
</CENTER>
</BODY></HTML>

Listing 6.41 ChangedDailySpecialListener.java (continued)

Chapter 6 ■ The Application Events Framework336

Listing 6.43 ChangeDailySpecial.java

package coreservlets;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that changes the daily specials. The web.xml
 * file specifies that only authenticated users in the
 * ceo role can access the servlet. A servlet context
 * attribute listener resets the count of daily special
 * orders when this servlet (or any other program) changes
 * the daily specials.
 */
public class ChangeDailySpecial extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String dailySpecialNames =
 request.getParameter("newSpecials");
 if ((dailySpecialNames == null) ||
 (dailySpecialNames.equals(""))) {
 dailySpecialNames = "MISSING-VALUE";
 }
 ArrayList<String> specials = new ArrayList<String>();
 String[] dailySpecials = dailySpecialNames.split("\\s++");
 for (String special : dailySpecials) {
 specials.add(special);
 }
 ServletContext context = getServletContext();
 context.setAttribute("daily-special-item-names",
 specials);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "New Daily Specials";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2 ALIGN=\"CENTER\">" + title + "</H2>\n" +
 "");

6.15 Using Multiple Cooperating Listeners 337

 String special;
 for(int i=0; i<specials.size(); i++) {
 special = (String)specials.get(i);
 out.println("" + special);
 }
 out.println("\n" +
 "</BODY></HTML>");
 }
}

Listing 6.44 web.xml (Excerpt for resetting order counts)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <!-- Register the listener that resets the order counts
 when the names of the daily specials change. -->

<listener>
 <listener-class>
 coreservlets.listeners.ChangedDailySpecialListener
 </listener-class>
 </listener>
 <!-- Assign the name ChangeDailySpecial to
 coreservlets.ChangeDailySpecial. -->
 <servlet>
 <servlet-name>ChangeDailySpecial</servlet-name>
 <servlet-class>
 coreservlets.ChangeDailySpecial
 </servlet-class>
 </servlet>
 <!-- Assign the URL /admin/ChangeDailySpecial to the
 servlet that is named ChangeDailySpecial. -->
 <servlet-mapping>
 <servlet-name>ChangeDailySpecial</servlet-name>
 <url-pattern>/admin/ChangeDailySpecial</url-pattern>
 </servlet-mapping>
</web-app>

Listing 6.43 ChangeDailySpecial.java (continued)

Chapter 6 ■ The Application Events Framework338

Figure 6–23 Requests by unauthenticated users for change-daily-specials.jsp get sent
to the login page (Listing 6.9).

Figure 6–24 Users who fail authentication are shown the login-failure page (Listing 6.10).

Figure 6–25 Users who pass authentication and are in the designated role (ceo) are
shown the form for changing the daily specials (Listing 6.42). The current daily specials are
displayed as the initial value of the text area.

6.16 The Complete Events Deployment Descriptor 339

Figure 6–26 Result of submitting the form for changing daily specials after yacht and
chalet are entered in the text area.

Figure 6–27 When the daily specials are changed, the servlet context attribute listener
(Listing 6.41) resets the order count.

6.16 The Complete Events
Deployment Descriptor

The previous sections showed various excerpts of the web.xml file for the application
events examples. Listing 6.45 shows the file in its entirety.

Chapter 6 ■ The Application Events Framework340

Listing 6.45
web.xml (Complete version for events
examples)

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <!-- Because the company name changes so frequently,
 supply it as a servlet context parameter instead
 of embedding it into lots of different servlets and
 JSP pages. The InitialCompanyNameListener will
 read this value and store it in the servlet context. -->
 <context-param>
 <param-name>companyName</param-name>
 <param-value>not-dot-com.com</param-value>
 </context-param>

 <!-- Also store the previous company name. -->
 <context-param>
 <param-name>formerCompanyName</param-name>
 <param-value>hot-dot-com.com</param-value>
 </context-param>

 <!-- Register the listener that sets up the
 initial company name. -->
 <listener>
 <listener-class>
 coreservlets.listeners.InitialCompanyNameListener
 </listener-class>
 </listener>

 <!-- Register the listener that monitors changes to
 the company name.
 -->
 <listener>
 <listener-class>
 coreservlets.listeners.ChangedCompanyNameListener
 </listener-class>
 </listener>

6.16 The Complete Events Deployment Descriptor 341

 <!-- Register the session counting event listener. -->
 <listener>
 <listener-class>
 coreservlets.listeners.SessionCounter
 </listener-class>
 </listener>

 <!-- Set the default session timeout to two minutes. -->
 <session-config>
 <session-timeout>2</session-timeout>
 </session-config>

 <!-- Assign the name ChangeCompanyName to
 coreservlets.ChangeCompanyName. -->
 <servlet>
 <servlet-name>ChangeCompanyName</servlet-name>
 <servlet-class>coreservlets.ChangeCompanyName</servlet-class>
 </servlet>
 <!-- Assign the URL /admin/ChangeCompanyName to the
 servlet that is named ChangeCompanyName. -->
 <servlet-mapping>
 <servlet-name>ChangeCompanyName</servlet-name>
 <url-pattern>/admin/ChangeCompanyName</url-pattern>
 </servlet-mapping>

 <!-- Protect everything within the "admin" directory.
 Direct client access to this directory requires
 authentication. -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ceo</role-name>
 </auth-constraint>
 </security-constraint>

 <!-- Declare security roles. -->
 <security-role>
 <role-name>ceo</role-name>
 </security-role>

Listing 6.45
web.xml (Complete version for events
examples) (continued)

Chapter 6 ■ The Application Events Framework342

 <!-- Tell the server to use form-based authentication. -->
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login/login.jsp</form-login-page>
 <form-error-page>/login/login-error.jsp</form-error-page>
 </form-login-config>
 </login-config>

 <!-- Register the listener that sets up the entries
 that will be used to monitor orders for the daily
 special. -->
 <listener>
 <listener-class>
 coreservlets.listeners.DailySpecialRegistrar
 </listener-class>
 </listener>

 <!-- Declare the names of the session attributes that
 are used to store items that customers are
 purchasing. The daily special listener will
 track changes to the values of these attributes. -->
 <context-param>
 <param-name>order-attribute-names</param-name>
 <param-value>
 orderedItem
 purchasedItem
 </param-value>
 </context-param>

 <!-- The item names of the current daily specials. -->
 <context-param>
 <param-name>daily-special-item-names</param-name>
 <param-value>
 chalet
 car
 </param-value>
 </context-param>

 <!-- Register the listener that counts orders for the daily
 special. -->
 <listener>
 <listener-class>
 coreservlets.listeners.DailySpecialWatcher
 </listener-class>
 </listener>

Listing 6.45
web.xml (Complete version for events
examples) (continued)

6.16 The Complete Events Deployment Descriptor 343

 <!-- Register the listener that resets the order counts
 when the names of the daily specials change. -->
 <listener>
 <listener-class>
 coreservlets.listeners.ChangedDailySpecialListener
 </listener-class>
 </listener>

 <!-- Register the yacht-watching event listener. -->
 <listener>
 <listener-class>
 coreservlets.listeners.YachtWatcher
 </listener-class>
 </listener>

 <!-- Assign the name OrderHandlingServlet to
 coreservlets.OrderHandlingServlet. -->
 <servlet>
 <servlet-name>OrderHandlingServlet</servlet-name>
 <servlet-class>
 coreservlets.OrderHandlingServlet
 </servlet-class>
 </servlet>
 <!-- Assign the URL /HandleOrders to the
 servlet that is named OrderHandlingServlet. -->
 <servlet-mapping>
 <servlet-name>OrderHandlingServlet</servlet-name>
 <url-pattern>/HandleOrders</url-pattern>
 </servlet-mapping>

 <!-- Assign the name ChangeDailySpecial to
 coreservlets.ChangeDailySpecial. -->
 <servlet>
 <servlet-name>ChangeDailySpecial</servlet-name>
 <servlet-class>
 coreservlets.ChangeDailySpecial
 </servlet-class>
 </servlet>

 <!-- Register the RequestCounter listener. -->
 <listener>
 <listener-class>
 coreservlets.listeners.RequestCounter
 </listener-class>
 </listener>

Listing 6.45
web.xml (Complete version for events
examples) (continued)

Chapter 6 ■ The Application Events Framework344

 <!-- Register the StopRequestCounter listener -->
 <listener>
 <listener-class>
 coreservlets.listeners.StopRequestCounter
 </listener-class>
 </listener>

 <!-- Declare ProcessRequestStats servlet -->
 <servlet>
 <servlet-name>ProcessRequestStats</servlet-name>
 <servlet-class>
 coreservlets.ProcessRequestStats
 </servlet-class>
 </servlet>
 <!-- Assign the URL /processStats to ProcessRequestStats
 servlet. -->
 <servlet-mapping>
 <servlet-name>ProcessRequestStats</servlet-name>
 <url-pattern>/processStats</url-pattern>
 </servlet-mapping>

 <!-- Assign the URL /admin/ChangeDailySpecial to the
 servlet that is named ChangeDailySpecial. -->
 <servlet-mapping>
 <servlet-name>ChangeDailySpecial</servlet-name>
 <url-pattern>/admin/ChangeDailySpecial</url-pattern>
 </servlet-mapping>

 <!-- Disable the invoker servlet. -->
 <servlet>
 <servlet-name>NoInvoker</servlet-name>
 <servlet-class>coreservlets.NoInvokerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>NoInvoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

Listing 6.45
web.xml (Complete version for events
examples) (continued)

6.16 The Complete Events Deployment Descriptor 345

 <!-- If URL gives a directory but no file name, try index.jsp
 first and index.html second. If neither is found,
 the result is server specific (e.g., a directory
 listing). Order of elements in web.xml matters.
 welcome-file-list needs to come after servlet but
 before error-page.
 -->
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 6.45
web.xml (Complete version for events
examples) (continued)

TAG LIBRARIES:
THE BASICS

Topics in This Chapter

• Identifying tag library components

• Creating simple custom tags

• Handling attributes in custom tags

• Outputting tag bodies

• Creating JSP-based custom tags with tag files

347

ChapterChapter 7

As discussed in Volume 1 (Section 11.2) of Core Servlets and JavaServer Pages, you
have many options when it comes to generating dynamic content inside the JSP page.
These options are as follows:

• Scripting elements calling servlet code directly
• Scripting elements calling servlet code indirectly (by means of utility

classes)
• Beans
• Servlet/JSP combo (MVC)
• MVC with JSP expression language
• Custom tags

The options at the top of the list are much simpler to use and are just as legitimate
as the options at the bottom of the list. However, industry has adopted a best practice
to avoid placing Java code inside the JSP page. This best practice stems from it being
much harder to debug and maintain Java code inside the JSP page. In addition, JSP
pages should concentrate only on the presentation logic. Introducing Java code into
the JSP page tends to divert its purpose and, inevitably, business logic starts to creep
in. To enforce this best practice, version 2.4 of the servlet specification went so far as
to provide a way to disable any type of JSP scripting for a group of JSP pages. We dis-
cuss how to disable scripting in Section 2.14 (Configuring JSP Pages).

That said, there are cases where the presentation logic itself is quite complex and
using the non-Java code options in the JSP page to express that logic becomes either
too clunky and unreadable or, sometimes, just impossible to achieve. This is where

Chapter 7 ■ Tag Libraries: The Basics348

logic through the familiar HTML-like structures.
This chapter discusses how to create and use custom tags utilizing the new Sim-

pleTag API, which was introduced in version 2.4 of the servlet specification. As its
name suggests, SimpleTag API is very easy to use in comparison to its predecessor,
now known as the classic tag API.

Although the SimpleTag API completely replaces the classic tag API, you should
keep in mind that it works only in containers compliant with servlet specification 2.4
and above. Because there are still a lot of applications running on servlet 2.3-compli-
ant containers, you should consider avoiding the SimpleTag API if you are not sure
what type of container your code will end up on.

7.1 Tag Library Components

To use custom JSP tags, you need to define three separate components:

• The tag handler class that defines the tag's behavior
• The TLD file that maps the XML element names to the tag

implementations
• The JSP file that uses the tag library

The rest of this section gives an overview of each of these components, and the
following sections give details on how to build these components for various styles of
tags. Most people find that the first tag they write is the hardest—the difficulty being
in knowing where each component should go, not in writing the
components. So, we suggest that you start by just downloading the simplest of the
examples of this chapter from http://volume2.coreservlets.com/ and getting those
examples to work on your machine. After that, you can move on and try creating
some of your own tags.

The Tag Handler Class
When defining a new tag, your first task is to define a Java class that tells the sys-
tem what to do when it sees the tag. This class must implement theSimpleTag
interface. In practice, you extend SimpleTagSupport, which implements the
SimpleTag interface and supplies standard implementations for some of its
methods. Both the SimpleTag interface and the SimpleTagSupport class reside
in the javax.servlet.jsp.tagext package.

http://volume2.coreservlets.com/

7.1 Tag Library Components 349

The very first action the container takes after loading the tag handler class is
instantiating it with its no-arg constructor. This means that every tag handler must
have a no-arg constructor or its instantiation will fail. Remember that the Java com-
piler provides one for you automatically unless you define a constructor with argu-
ments. In that case, be sure to define a no-arg constructor yourself.

The code that does the actual work of the tag goes inside the doTag method. Usu-
ally, this code outputs content to the JSP page by invoking the print method of the
JspWriter class. To obtain an instance of the JstWriter class you call getJsp-
Context().getOut() inside the doTag method. The doTag method is called at
request time. It’s important to note that, unlike the classic tag model, the Simple-
Tag model never reuses tag handler instances. In fact, a new instance of the tag han-
dler class is created for every tag occurrence on the page. This alleviates worries
about race conditions and cached values even if you use instance variables in the tag
handler class.

You place the compiled tag handler in the same location you would place a regular
servlet, inside the WEB-INF/classes directory, keeping the package structure intact.
For example, if your tag handler class belongs to the mytags package and its class
name is MyTag, you would place theMyTag.class file inside the WEB-INF/classes/

mytags/ directory.
Listing 7.1 shows an example of a tag handler class.

The Tag Library Descriptor File
Once you have defined a tag handler, your next task is to identify this class to the server
and to associate it with a particular XML tag name. This task is accomplished by means
of a TLD file in XML format. This file contains some fixed information (e.g., XML
Schema instance declaration), an arbitrary short name for your library, a short descrip-
tion, and a series of tag descriptions. Listing 7.2 shows an example TLD file.

Listing 7.1 Example Tag Handler Class

package somepackage;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class ExampleTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 out.print("Hello World!");
 }
}

Chapter 7 ■ Tag Libraries: The Basics350

We describe the details of the contents of the TLD file in later sections. For now,
just note that the tag element through the following subelements in their required
order defines the custom tag.

• description. This optional element allows the tag developer to
document the purpose of the custom tag.

• name. This required element defines the name of the tag as it will be
referred to by the JSP page (really tag suffix, as will be seen shortly).

• tag-class. This required element identifies the fully qualified name
of the implementing tag handler class.

• body-content. This required element tells the container how to
treat the content between the beginning and ending occurrence of the
tag, if any. The value that appears here can be either empty,
scriptless, tagdependent, or JSP.

The value of empty means that no content is allowed to appear in
the body of the tag. This would mean that the declared tag can only
appear in the form:

<prefix:tag/>

or

<prefix:tag></prefix:tag>

(without any spaces between the opening and closing tags). Placing
any content inside the tag body would generate a page translation
error.

Listing 7.2 Example Tag Library Descriptor File

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib</short-name>

<tag>
 <description>Example tag</description>
 <name>example</name>
 <tag-class>package.TagHandlerClass</tag-class>
 <body-content>empty</body-content>
 </tag>
</taglib>

7.1 Tag Library Components 351

The value of scriptless means that the tag body is allowed to
have JSP content as long as it doesn’t contain any scripting elements
like <% ... %> or <%= ... %>. If present, the body of the tag
would be processed just like any other JSP content.

The value of tagdependent means that the tag is allowed to have
any type of content as its body. However, this content is not processed
at all and completely ignored. It is up to the developer of the tag
handler to get access to that content and do something with it. For
example, if you wanted to develop a tag that would allow the JSP page
developer to execute an SQL statement, providing the SQL in the
body of the tag, you would use tagdependent as the value of the
body-content element.

Finally, the value of JSP is provided for backward compatibility
with the classic custom tag model. It is not a legal value when used
with the SimpleTag API.

Note that there is no legal way of allowing any scripting elements
to appear as the tag body under the new SimpleTag API model.

Core Warning

When using the SimpleTag API, it is illegal to include scripting elements
in the body of the tag.

The TLD file must be placed inside the WEB-INF directory or any subdirectory
thereof.

Core Note

The TLD file must be placed inside the WEB-INF directory or a
subdirectory thereof.

We suggest that you don’t try to retype the TLD every time you start a new
tag library, but start with a template. You can download such a template from
http://volume2.coreservlets.com/.

http://volume2.coreservlets.com/

Chapter 7 ■ Tag Libraries: The Basics352

The JSP File
Once you have a tag handler implementation and a TLD, you are ready to write a
JSP file that makes use of the tag. Listing 7.3 gives an example. Somewhere in the
JSP page you need to place the taglib directive. This directive has the following
form:

<%@ taglib uri="..." prefix="..." %>

The required uri attribute can be either an absolute or relative URL referring to a
TLD file like the one shown in Listing 7.2. For now, we will use a simple URL rela-
tive to the Web application’s root directory. This makes it easy to refer to the same
TLD file from multiple JSP pages in different directories. Remember that the TLD
file must be placed somewhere inside the WEB-INF directory. Because this URL will
be resolved on the server and not the client, it is allowed to refer to the WEB-INF

directory, which is always protected from direct client access.
The required prefix attribute specifies a prefix to use in front of any tag name

defined in the TLD of this taglib declaration. For example, if the TLD file defines
a tag named tag1 and the prefix attribute has a value of test, the JSP page would
need to refer to the tag as test:tag1. This tag could be used in either of the follow-
ing two ways, depending on whether it is defined to be a container that makes use of
the tag body:

<test:tag1>Arbitrary JSP</test:tag1>

or just

<test:tag1 />

Listing 7.3 Example JSP File

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Example JSP page</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<%@ taglib uri="/WEB-INF/tlds/example.tld"
 prefix="test" %>
<test:example/>
<test:example></test:example>
</BODY></HTML>

7.2 Example: Simple Prime Tag 353

7.2 Example: Simple Prime Tag

In this example we create a simple custom tag that would output a random 50-digit
prime number to the JSP page (a real treat!). We accomplish this task with the help
of the Primes class shown in Listing 7.4.

We define a tag handler class SimplePrimeTag that extends the SimpleTag-
Support class. In its doTag method, we obtain a reference to the JspWriter by
calling getJspContext().getOut(). Then, by using the static method
Primes.nextPrime we generate our random 50-digit prime number. We output
this number to the JSP page by invoking the print method on the JspWriter
object reference. The code for SimplePrimeTag.java is shown in Listing 7.5.

Listing 7.4 Primes.java

package coreservlets;
import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,
 * and find the next prime number above a given BigInteger.
 */
public class Primes {
 private static final BigInteger ZERO = BigInteger.ZERO;
 private static final BigInteger ONE = BigInteger.ONE;
 private static final BigInteger TWO = new BigInteger("2");

 // Likelihood of false prime is less than 1/2^ERR_VAL
 // Presumably BigInteger uses the Miller-Rabin test or
 // equivalent, and thus is NOT fooled by Carmichael numbers.
 // See section 33.8 of Cormen et al.'s Introduction to
 // Algorithms for details.
 private static final int ERR_VAL = 100;

public static BigInteger nextPrime(BigInteger start) {
 if (isEven(start))
 start = start.add(ONE);
 else
 start = start.add(TWO);
 if (start.isProbablePrime(ERR_VAL))
 return(start);
 else
 return(nextPrime(start));
 }

Chapter 7 ■ Tag Libraries: The Basics354

 private static boolean isEven(BigInteger n) {
 return(n.mod(TWO).equals(ZERO));
 }

 private static StringBuffer[] digits =
 { new StringBuffer("0"), new StringBuffer("1"),
 new StringBuffer("2"), new StringBuffer("3"),
 new StringBuffer("4"), new StringBuffer("5"),
 new StringBuffer("6"), new StringBuffer("7"),
 new StringBuffer("8"), new StringBuffer("9") };
 private static StringBuffer randomDigit(boolean isZeroOK) {
 int index;
 if (isZeroOK) {
 index = (int)Math.floor(Math.random() * 10);
 } else {
 index = 1 + (int)Math.floor(Math.random() * 9);
 }
 return(digits[index]);
 }

 /** Create a random big integer where every digit is
 * selected randomly (except that the first digit
 * cannot be a zero).
 */

public static BigInteger random(int numDigits) {
 StringBuffer s = new StringBuffer("");
 for(int i=0; i<numDigits; i++) {
 if (i == 0) {
 // First digit must be non-zero.
 s.append(randomDigit(false));
 } else {
 s.append(randomDigit(true));
 }
 }
 return(new BigInteger(s.toString()));
 }

 /** Simple command-line program to test. Enter number
 * of digits, and it picks a random number of that
 * length and then prints the first 50 prime numbers
 * above that.
 */

 public static void main(String[] args) {
 int numDigits;

Listing 7.4 Primes.java (continued)

7.2 Example: Simple Prime Tag 355

Now that we have our tag handler class, we need to describe our tag to the con-
tainer. We do this using the TLD csajsp-taglib.tld shown in Listing 7.6. Because all
our tag does is output a prime number, we don’t need to allow the tag to include a
body, and so we specify empty as the value of the body-content element. We
place the csajsp-taglib.tld file in the WEB-INF/tlds folder.

 try {
 numDigits = Integer.parseInt(args[0]);
 } catch (Exception e) { // No args or illegal arg.
 numDigits = 150;
 }
 BigInteger start = random(numDigits);
 for(int i=0; i<50; i++) {
 start = nextPrime(start);
 System.out.println("Prime " + i + " = " + start);
 }
 }
}

Listing 7.5 SimplePrimeTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import java.math.*;
import coreservlets.Primes;

/**
 * SimplePrimeTag output a random 50-digit prime number
 * to the JSP page.
 */
public class SimplePrimeTag extends SimpleTagSupport {
 protected int length = 50;

public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 BigInteger prime = Primes.nextPrime(Primes.random(length));
 out.print(prime);
 }
}

Listing 7.4 Primes.java (continued)

Chapter 7 ■ Tag Libraries: The Basics356

Listing 7.7 shows the simple-primes-1.jsp page, which uses the simple prime
tag. We assign csajsp as the prefix for all tags (so far just simplePrime) in the
/WEB-INF/tlds/csajsp-taglib.tld library. Also note that it is perfectly legal
to use a closing tag with the body-content of empty as long as there is nothing,
not even a space, between the opening tag and the closing tag, as shown by the last
occurrence of the tag in the simple-primes-1.jsp page; that is, <csajsp:simple-
Prime></csajsp:simplePrime>. The resulting output is shown in Figure 7–1.

Listing 7.6 Excerpt from csajsp-taglib.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib</short-name>

<tag>
 <description>Outputs 50-digit primes</description>
 <name>simplePrime</name>
 <tag-class>coreservlets.tags.SimplePrimeTag</tag-class>
 <body-content>empty</body-content>
 </tag>
 ...
</taglib>

Listing 7.7 simple-primes-1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some 50-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Some 50-Digit Primes</H1>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib.tld"
 prefix="csajsp" %>

7.3 Assigning Attributes to Tags 357

Figure 7–1 Result of simple-primes-1.jsp.

7.3 Assigning Attributes to Tags

Allowing tags like

<prefix:name attribute1="value1" attribute2="value2"... />

adds significant flexibility to your tag library because the attributes allow us to pass
information to the tag. This section explains how to add attribute support to your tags.

Tag Attributes: Tag Handler Class
Providing support for attributes is straightforward. Use of an attribute called
attribute1 simply results in a call to a method called setAttribute1 in your
class that extends SimpleTagSupport (or that otherwise implements the Simple-
Tag interface). Consequently, adding support for an attribute named attribute1
is merely a matter of implementing the following method in your tag handler class:

 <csajsp:simplePrime />
 <csajsp:simplePrime />
 <csajsp:simplePrime />
 <csajsp:simplePrime></csajsp:simplePrime>

</BODY></HTML>

Listing 7.7 simple-primes-1.jsp (continued)

Chapter 7 ■ Tag Libraries: The Basics358

public void setAttribute1(String value1) {
doSomethingWith(value1);

}

Note that an attribute with the name of attributeName (lowercase a) corre-
sponds to a method called setAttributeName (uppercase A).

One of the most common things to do in the attribute handler is to simply store
the attribute in a field for later use by the doTag method. For example, the following
is a code snippet of a tag implementation that adds support for the message
attribute:

private String message = "Default Message";
public void setMessage(String message) {

this.message = message;
}

If the tag handler is accessed from other classes, it is a good idea to provide a
getAttributeName method in addition to the setAttributeName method.
Only setAttributeName is required, however.

Tag Attributes: Tag Library Descriptor
Tag attributes must be declared inside the tag element by means of an attribute
element. The attribute element has three nested elements that can appear
between <attribute> and </attribute>.

• name. This is a required element that defines the case-sensitive
attribute name.

• required. This is an optional element that stipulates whether the
attribute must always be supplied, true, or is optional, false
(default). If required is false and the JSP page omits the attribute,
no call is made to the setAttributeName method, so be sure to
give default values to the fields that the method sets if the attribute is
not declared as required. Omitting a tag attribute, which is declared
with the required element equal to true, results in an error at page
translation time.

• rtexprvalue. This is an optional element that indicates whether the
attribute value can be either a JSP scripting expression like <%=
expression %> or JSP EL like ${bean.value} (true), or whether
it must be a fixed string (false). The default value is false, so this
element is usually omitted except when you want to allow attributes to
have values determined at request time. Note that even though it is never
legal for the body of the tag to contain JSP scripting expressions like
<%= expression %>, they are nevertheless legal as attribute values.

7.4 Example: Prime Tag with Variable Length 359

Tag Attributes: JSP File
As before, the JSP page has to declare the tag library using the taglib directive.
This is done in the following form:

<%@ taglib uri="..." prefix="..." %>

The usage of the tag is very similar, except now we are able to specify a custom
attribute as well. Remember that just like tag names, the attribute names are
case-sensitive and have to appear in the JSP page exactly as they were declared inside
the TLD file. Because custom tags are based on XML syntax, the value of an
attribute has to be enclosed by either single or double quotes. For example:

<some-prefix:tag1 attribute1="value" />

7.4 Example: Prime Tag with
Variable Length

In this example, we modify the previous prime number example, shown in Section
7.2 (Example: Simple Prime Tag), to provide an attribute for specifying the length of
the prime number. Listing 7.8 shows the PrimeTag class, a subclass of SimpleP-
rimeTag that adds support for the length attribute. This change is achieved by
supplying an additional method, setLength. When this method is called, it
attempts to convert its String argument into an int and store it in an instance vari-
able length. If it fails, the originally initialized value for the instance variable
length is used.

The TLD, shown in Listing 7.9, declares the optional attribute length. It is this
declaration that tells the container to call the setLength method if the attribute
length appears in the tag when it’s used in the JSP page.

The JSP page, shown in Listing 7.10, declares the tag library with the taglib
directive as before. However, now we are able to specify how long our prime number
should be. If we omit the length attribute, the prime tag defaults to 50. Figure 7–2
shows the result of this page.

Chapter 7 ■ Tag Libraries: The Basics360

Listing 7.8 PrimeTag.java

package coreservlets.tags;

/** PrimeTag outputs a random prime number
 * to the JSP page. The length of the prime number is
 * specified by the length attribute supplied by the JSP
 * page. If not supplied, it defaults to 50.
 */
public class PrimeTag extends SimplePrimeTag {

public void setLength(String length) {
 try {
 this.length = Integer.parseInt(length);
 } catch(NumberFormatException nfe) {
 // Do nothing as length is already set to 50
 }
 }
}

Listing 7.9 Excerpt from csajsp-taglib.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib</short-name>

 <tag>
 <description>Outputs an N-digit prime</description>
 <name>prime</name>
 <tag-class>coreservlets.tags.PrimeTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <description>N (prime number length)</description>
 <name>length</name>
 <required>false</required>
 </attribute>
 </tag>
</taglib>

7.4 Example: Prime Tag with Variable Length 361

Figure 7–2 Result of primes-1.jsp.

Listing 7.10 primes-1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some N-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Some N-Digit Primes</H1>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib.tld"
 prefix="csajsp" %>

 20-digit: <csajsp:prime length="20" />
 40-digit: <csajsp:prime length="40" />
 80-digit: <csajsp:prime length="80" />
 Default (50-digit): <csajsp:prime />

</BODY></HTML>

Chapter 7 ■ Tag Libraries: The Basics362

7.5 Including Tag Body
in the Tag Output

Up to this point, all of the custom tags you have seen did not allow a body and thus
were always used as standalone tags of the following form:

<prefix:tagname/>
<prefix:tagname></prefix:tagname>

Note that the second tag shown does not have any space between the opening and
closing tags. The fact that these tags were not allowed to include a body was a direct
result of supplying the element body-content with the value of empty.

In this section, we see how to define tags that use their body content and are thus
written in the following matter:

<prefix:tagname>scriptless JSP content</prefix:tagname>

Tag Bodies: Tag Handler Class
Supporting tag bodies does not introduce any structural changes to the tag handler
class. You still need to include setter methods for any attributes you are planning to
declare and use. You still need to override the doTag method. To output the body
content of the tag, inside the doTag method you need to acquire the JspFragment
instance representing the body of the tag by calling the getJspBody method, then
using its invoke method passing it null as its argument. Usually, this is done in a
single step as follows:

getJspBody().invoke(null);

The container processes the JSP content found in the body of the tag just like any
other JSP page content. If the invoke method is passed null as its argument, the
resulting output of that JSP content is passed verbatim to the client. Therefore, the
doTag method has no way of accessing the tag body output. All it can do is pass it
along. We show how to access and modify the output of the tag body content before
it’s sent to the client in Section 8.1 (Manipulating Tag Body). It’s important to stress,
however, that it is the output resulting from the execution of the JSP code in the tag
body, not the JSP code itself, that is passed to the client.

Core Note

When getJspBody().invoke(null) is called, it is the output
resulting from the execution of the tag body’s JSP content that gets
passed to the client, not the JSP code itself.

7.5 Including Tag Body in the Tag Output 363

In practice, you almost always output something before or after outputting the tag
body as follows:

JspWriter out = getJspContext().getOut();
out.print("...");
getJspBody().invoke(null);
out.print("...");

Note that because sending the JSP content of the tag body boils down to a simple
method invocation, it is very easy to create a tag that conditionally sends the JSP con-
tent to the client by surrounding the method call with an if statement. We show an
example of this in Section 7.7 (Example: Debug Tag). It is also trivial to output the
tag body content several times, as the method call can be placed inside a for loop
and invoked many times. We show an example of this in Section 8.4 (Example: Sim-
ple Looping Tag).

Tag Bodies: Tag Library Descriptor
The change to the TLD is trivial. Instead of the value of empty for the required
body-content element, we need to provide the value of scriptless.

Tag Bodies: JSP File
There are no changes to the JSP file. You still need to declare and assign a prefix
to the TLD through the taglib directive. However, now we can use our tags with
nonempty bodies.

Remember, however, that the body-content was declared as scriptless,
and that scriptless means we are allowed to place JSP content into the body of
the tag, but are not allowed to place JSP scriptlets there. So, the following is a legal
usage of the tag:

<prefix:tagname>
some content with ${bean.property}

</prefix:tagname>

The following would be illegal:

<prefix:tagname>
some content with <%= bean.property %>

</prefix:tagname>

Chapter 7 ■ Tag Libraries: The Basics364

7.6 Example: Heading Tag

Listing 7.11 shows HeadingTag.java, which defines a tag for a heading element that is
more flexible than the standard HTML H1 through H6 elements. (Yes, we know that
the entire problem could be solved more elegantly with Cascading Style Sheets
[CSS] and without the use of a custom tag, but this is for demonstration purposes
only, so work with us.) This new element allows a precise font size, a list of preferred
font names (the first entry that is available on the client system will be used), a fore-
ground color, a background color, a border, and an alignment (LEFT, CENTER,
RIGHT). Only the alignment capability is available with the H1 through H6 elements.
The heading is implemented through use of a one-cell table enclosing a SPAN ele-
ment that has embedded stylesheet attributes.

The doTag method first generates the <TABLE> and start tags, then
invokes getJspBody().invoke(null) to instruct the system to include the tag
body, and then generates the and </TABLE> tags. We use various set-
AttributeName methods to handle the attributes like bgColor and fontSize.

Listing 7.12 shows the excerpt from the csajsp-taglib.tld file that defines the
heading tag. Listing 7.13 shows heading-1.jsp, which uses the heading tag. Figure
7–3 shows the resulting JSP page.

Listing 7.11 HeadingTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Heading tag allows the JSP developer to create
 * a heading and specify alignment, background color,
 * foreground color, font, etc. for that heading.
 */
public class HeadingTag extends SimpleTagSupport {
 private String align;
 private String bgColor;
 private String border;
 private String fgColor;
 private String font;
 private String size;

 public void setAlign(String align) {
 this.align = align;
 }

7.6 Example: Heading Tag 365

 public void setBgColor(String bgColor) {
 this.bgColor = bgColor;
 }
 public void setBorder(String border) {
 this.border = border;
 }
 public void setFgColor(String fgColor) {
 this.fgColor = fgColor;
 }
 public void setFont(String font) {
 this.font = font;
 }
 public void setSize(String size) {
 this.size = size;
 }

public void doTag() throws JspException, IOException {
 JspWriter out = getJspContext().getOut();
 out.print("<TABLE ALIGN=\"" + align + "\"\n" +
 " BGCOLOR=\"" + bgColor + "\"\n" +
 " BORDER=" + border + "\">\n");
 out.print("<TR><TH>");
 out.print("<SPAN STYLE=\"color: " + fgColor + ";\n" +
 " font-family: " + font + ";\n" +
 " font-size: " + size + "px; " +
 "\">\n");
 // Output content of the body
 getJspBody().invoke(null);
 out.println("</TH></TR></TABLE>" +
 "<BR CLEAR=\"ALL\">
");
 }
}

Listing 7.12 Excerpt from csajsp-taglib.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib</short-name>

Listing 7.11 HeadingTag.java (continued)

Chapter 7 ■ Tag Libraries: The Basics366

<tag>
 <description>Formats enclosed heading</description>
 <name>heading</name>
 <tag-class>coreservlets.tags.HeadingTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>align</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>bgColor</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>border</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>fgColor</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>font</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>size</name>
 <required>true</required>
 </attribute>
 </tag>
</taglib>

Listing 7.13 heading-1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Headings</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib.tld"
 prefix="csajsp" %>

Listing 7.12 Excerpt from csajsp-taglib.tld (continued)

7.6 Example: Heading Tag 367

Figure 7–3 Result of heading-1.jsp.

<csajsp:heading align="LEFT" bgColor="CYAN"
 border="10" fgColor="BLACK"
 font="Arial Black" size="78">
 First Heading
</csajsp:heading>

<csajsp:heading align="RIGHT" bgColor="RED"
 border="1" fgColor="YELLOW"
 font="Times New Roman" size="50">
 Second Heading
</csajsp:heading>

<csajsp:heading align="CENTER" bgColor="#C0C0C0"
 border="20" fgColor="BLUE"
 font="Arial Narrow" size="100">
 Third Heading
</csajsp:heading>
</BODY></HTML>

Listing 7.13 heading-1.jsp (continued)

Chapter 7 ■ Tag Libraries: The Basics368

7.7 Example: Debug Tag

In Section 7.5 (Including Tag Body in the Tag Output), we explained that to send the
JSP content of the tag body to the client, one need only call the getJsp-
Body().invoke(null) method inside the doTag method of the tag handler class.
This simplicity allows us to easily create tags that output their bodies conditionally.
This functionality can be achieved by s imply surrounding the getJsp-
Body().invoke(null) invocation within an if statement.

In this section, we present an example of a custom tag that conditionally outputs
its tag body. It’s quite often the case when the output of the JSP page is something
other than what you expected. In such a case, it’s useful to have the option of seeing
some debugging information right on the page without having to resort to embed-
ding System.out.print statements throughout the page. However, we do not
want the user to see the debugging information in the production system. To solve
this problem, we create a custom tag that conditionally outputs its body based on the
presence of the debug request parameter. If the debug request parameter is
present, it would signal to the JSP page to output the debugging information.

Listing 7.14 shows the DebugTag.java file. In its doTag method, we output the
tag body if the debug request parameter is present and skip the body of the tag if it’s
not. Inside the JSP page, shown in Listing 7.16, we surround the debugging informa-
tion with our debug tag. Listing 7.15 shows the excerpt from the csajsp-taglib.tld file
declaring the debug tag to the container. Listing 7.16 shows the debug.jsp page that
uses the debug tag. Figure 7–4 shows the result of the debug.jsp page when the
debug request parameter is not present. Figure 7–5 shows the result of the
debug.jsp page when the debug request parameter is supplied.

Listing 7.14 DebugTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.http.*;

/**
 * DebugTag outputs its body if the request parameter
 * 'debug' is present and skips it if it's not.
 */

7.7 Example: Debug Tag 369

public class DebugTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 PageContext context = (PageContext) getJspContext();
 HttpServletRequest request =
 (HttpServletRequest) context.getRequest();
 // Output body of tag only if debug param is present.
 if (request.getParameter("debug") != null) {
 getJspBody().invoke(null);
 }
 }
}

Listing 7.15 Excerpt from csajsp-taglib.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib</short-name>

<tag>
 <description>Conditionally outputs enclosed body</description>
 <name>debug</name>
 <tag-class>coreservlets.tags.DebugTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>
</taglib>

Listing 7.16 debug.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some Hard-to-Debug Page</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

Listing 7.14 DebugTag.java (continued)

Chapter 7 ■ Tag Libraries: The Basics370

Figure 7–4 Result of debug.jsp page without supplying the debug request parameter.

<BODY>
<H1>Some Hard-to-Debug Page</H1>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib.tld"
 prefix="csajsp" %>
Top of regular page. Blah, blah, blah.
Yadda, yadda, yadda.
<csajsp:debug>
<H2>Debug Info:</H2>

-Remote Host: ${pageContext.request.remoteHost}

-Session ID: ${pageContext.session.id}

-The foo parameter: ${param.foo}

</csajsp:debug>
<P>
Bottom of regular page. Blah, blah, blah.
Yadda, yadda, yadda.
</BODY></HTML>

Listing 7.16 debug.jsp (continued)

7.8 Creating Tag Files 371

Figure 7–5 Result of debug.jsp page when the debug request parameter is supplied.

7.8 Creating Tag Files

JSP specification version 2.0 introduced a JSP-based way to create custom tags using
tag files. One of the key differences between what we talk about in the beginning of
this chapter, Java-based custom tags, and tag files (or JSP-based custom tags) is that
with Java-based tags the tag handler is a Java class, whereas with JSP-based tags the
tag handler is a JSP page. Tag files are also a bit simpler to write because they don’t
require you to provide a TLD.

The guidelines for when to develop a JSP-based custom tag versus a Java-based
custom tag are analogous to the guidelines for when to use a JSP page versus a serv-
let. When there is a lot of logic, use Java to create output. When there is a lot of
HTML formatting, use tag files to create output. To review the general benefits of
JSPs versus servlets, please see Section 10.2 of Volume 1.

There is one caveat that might force your choice between tag files and Java-based
custom tags. Tag files run only in JSP 2.0, whereas Java-based custom tags have a
“classic” version that does not rely on the new SimpleTag API. So, if the container
you are targeting is only compliant with earlier versions of the specification, you have
to use classic Java-based custom tag development. The bad news is that classic

Chapter 7 ■ Tag Libraries: The Basics372

Java-based custom tag development is quite more complicated than the SimpleTag
API and we do not cover classic tags in this book. The good news is that almost all
mainstream containers have been updated to be compliant with servlet specification
2.4 and JSP specification 2.0, so chances are you won’t need to develop the classic
Java-based custom tags.

In general, there are two steps to creating a JSP-based custom tag.

• Create a JSP-based tag file. This file is a fragment of a JSP page
with some special directives and a .tag extension. It must be placed
inside the WEB-INF/tags directory or a subdirectory thereof.

• Create a JSP page that uses the tag file. The JSP page points to
the directory where the tag file resides. The name of the tag file
(minus the .tag extension) becomes the name of the custom tag and
therefore no TLD connecting the implementation of the tag with its
name is needed.

In the next few sections, we reproduce the same custom tags we developed earlier
in this chapter, but we use tag files to accomplish it.

7.9 Example: Simple Prime
Tag Using Tag Files

Let’s rewrite the simple prime custom tag example using tag files. Listing 7.17 shows
simplePrime2.tag. It consists of just one line invoking the static method nextPrime
of the Primes class. The Primes.java file is shown in Listing 7.4. We place the
simplePrime2.tag file into the WEB-INF/tags directory. Listing 7.18 shows sim-

ple-primes-2.jsp, which uses our JSP-based custom tag. Note that the taglib direc-
tive no longer has a uri attribute, but uses a tagdir attribute instead. This attribute
tells the container which directory contains the tag files. Figure 7–6 shows the result
of simple-primes-2.jsp.

Listing 7.17 simplePrime2.tag

<%= coreservlets.Primes.nextPrime
 (coreservlets.Primes.random(50)) %>

7.9 Example: Simple Prime Tag Using Tag Files 373

Figure 7–6 Result of simple-primes-2.jsp.

Listing 7.18 simple-primes-2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some 50-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Some 50-Digit Primes</H1>
<%@ taglib tagdir="/WEB-INF/tags" prefix="csajsp" %>

 <csajsp:simplePrime2 />
 <csajsp:simplePrime2 />
 <csajsp:simplePrime2 />
 <csajsp:simplePrime2 />

</BODY></HTML>

Chapter 7 ■ Tag Libraries: The Basics374

7.10 Example: Prime Tag with
Variable Length Using Tag Files

In this section, we rewrite the example of Section 7.4 (Example: Prime Tag with Vari-
able Length) with a JSP-based custom tag. To use attributes with a JSP-based custom
tag, each attribute must be declared inside the tag file. This declaration is accom-
plished by the attribute directive. The attribute directive itself has attributes
that provide the same information that the attribute subelements inside the TLD
would provide. For example, you can specify whether an attribute is required or not
by supplying a required attribute with a value of either true or false. When the
value is passed through an attribute to the tag file, it is automatically stored into a
scoped variable for access from the JSP EL and into a local variable for access from
Java code (scriptlets and scripting expressions). Note once again that because the tag
file has the ability to describe itself to the container, no TLD is required.

Listing 7.19 shows prime2.tag declaring an optional attribute called length.
Note that we are able to refer to that attribute just like to any other local variable
inside the Java code. The JSP page, primes-2.jsp, shown in Listing 7.20, uses our tag
file to output prime numbers of different lengths. Figure 7–7 shows the result of
primes-2.jsp.

Listing 7.19 prime2.tag

<%@ attribute name="length" required="false" %>
<%
int len = 50;
try {
 len = Integer.parseInt(length);
} catch(NumberFormatException nfe) {}
%>
<%= coreservlets.Primes.nextPrime
 (coreservlets.Primes.random(len)) %>

7.10 Example: Prime Tag with Variable Length Using Tag Files 375

Figure 7–7 Result of primes-2.jsp.

Listing 7.20 primes-2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some N-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Some N-Digit Primes</H1>
<%@ taglib tagdir="/WEB-INF/tags" prefix="csajsp" %>

 20-digit: <csajsp:prime2 length="20" />
 40-digit: <csajsp:prime2 length="40" />
 80-digit: <csajsp:prime2 length="80" />
 Default (50-digit): <csajsp:prime2 />

</BODY></HTML>

Chapter 7 ■ Tag Libraries: The Basics376

7.11 Example: Heading Tag
Using Tag Files

In this section, we rewrite the heading example of Section 7.6 (Example: Heading Tag)
with a JSP-based custom tag. Outputting the tag body inside a tag file is as simple as pro-
viding a <jsp:doBody/> tag. That’s it! No additional configurations, no TLD file, and
the access to attributes is still the same simple process described in Section 7.10 (Exam-
ple: Prime Tag with Variable Length Using Tag Files). Just place <jsp:doBody/>
where you want the tag body to appear in the final output and you are done.

Listing 7.21 shows the heading2.tag file. It declares quite a number of required
attributes and then proceeds to use them as regular scoped variables. We use
<jsp:doBody/> to output the body of the tag to the client. Listing 7.22 shows the
headings-2.jsp file, which uses the heading2.tag custom tag. Figure 7–8 shows the
result of headings-2.jsp.

Listing 7.21 heading2.tag

<%@ attribute name="align" required="true" %>
<%@ attribute name="bgColor" required="true" %>
<%@ attribute name="border" required="true" %>
<%@ attribute name="fgColor" required="true" %>
<%@ attribute name="font" required="true" %>
<%@ attribute name="size" required="true" %>
<TABLE ALIGN="${align}"
 BGCOLOR="${bgColor}"
 BORDER="${border}">
 <TR><TH>
 <SPAN STYLE="color: ${fgColor};
 font-family: ${font};
 font-size: ${size}px;">
 <jsp:doBody/>
</TABLE><BR CLEAR="ALL">

Listing 7.22 headings-2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Headings</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

7.11 Example: Heading Tag Using Tag Files 377

Figure 7–8 Result of headings-2.jsp.

<BODY>
<%@ taglib tagdir="/WEB-INF/tags" prefix="csajsp" %>
<csajsp:heading2 align="LEFT" bgColor="CYAN"
 border="10" fgColor="BLACK"
 font="Arial Black" size="78">
 First Heading
</csajsp:heading2>
<csajsp:heading2 align="RIGHT" bgColor="RED"
 border="1" fgColor="YELLOW"
 font="Times New Roman" size="50">
 Second Heading
</csajsp:heading2>
<csajsp:heading2 align="CENTER" bgColor="#C0C0C0"
 border="20" fgColor="BLUE"
 font="Arial Narrow" size="100">
 Third Heading
</csajsp:heading2>
</BODY></HTML>

Listing 7.22 headings-2.jsp (continued)

TAG LIBRARIES:
ADVANCED FEATURES

Topics in This Chapter

• Manipulating tag body

• Assigning dynamic values to tag attributes

• Assigning complex objects as values to tag attributes

• Creating looping tags

• Creating expression language functions

• Working with nested custom tags

379

ChapterChapter 8

As we mention throughout the book, the JSP page should, under normal circum-
stances, contain no business logic of any kind. The JSP page is there to present the
output of some business logic operation, nothing more. Crowding the JSP page with
anything else makes it harder to write the code for the page and introduces mainte-
nance headaches down the line. In other words, the JSP page should contain only the
presentation logic.

However, it is quite often the case that the presentation logic itself is very complex
and would require use of straightforward Java code to implement. Java code is some-
thing we try to avoid inside the JSP pages. What we want to do is write tag-based
code inside the JSP pages and write the Java code inside regular Java classes.
Java-based custom tags allow us to do just that.

In Chapter 7 (Tag Libraries: The Basics), we discussed the basics of creating and
working with Java-based as well as JSP-based custom tags. In this chapter, we con-
tinue talking about Java-based custom tags while looking at some of the more
advanced applications.

Chapter 8 ■ Tag Libraries: Advanced Features380

8.1 Manipulating Tag Body

In Section 7.5 (Including Tag Body in the Tag Output), we discussed how to include
the body of the tag in the output of the Java-based custom tag. To review, there are
essentially two things you need to do.

• Specify scriptless in the body-content element of the TLD for
the tag. This allows the page author to insert JSP content between the
opening and closing elements of the tag. Remember that this JSP
content is not allowed to have any scripting elements like <% ... %>
or <%= ... %>.

• Invoke the output of the tag body by calling
getJspBody().invoke(null) inside the doTag method of the
tag handler class. Remember that this statement passes the output of
the JSP content to the client, not the actual JSP code itself.

The invoke method takes a Writer as its argument. If null is passed to the
invoke method, the container directs the output of the tag body to the JspWriter
object. The server obtains a reference to this object by calling methods similar to
getJspContext().getOut(). In other words, the statements

getJspBody().invoke(null);

and

getJspBody().invoke(getJspContext().getOut());

accomplish exactly the same result.
This construct lets us pass a different Writer to the invoke method. Using the

new Writer, we can buffer up the output of the JSP content, extract it from the
Writer, manipulate it, and output the new content to the client.

The following are the steps of how this can be accomplished.

1. Create an instance of a convenient Writer. Any class that inherits
from java.io.Writer class is acceptable. Because the output to the
client is usually HTML, which is just a string, the java.io.String-
Writer class is the most common Writer to use. For example:

StringWriter myWriter = new StringWriter();

2. Pass the newly created StringWriter as an argument to the
invoke method. For example:

getJspBody().invoke(myWriter);

Note that now the output of the tag body is not sent to the client but
buffered up inside myWriter.

8.2 Example: HTML-Filtering Tag 381

3. Extract the buffered output from the Writer, modify it, and send the
modified version to the client like so:

String modified = modify(myWriter.toString());
getJspContext().getOut().print(modified);

8.2 Example: HTML-Filtering Tag

There are two types of tags in HTML that affect the style of the characters as they
are rendered by the browsers: physical and logical style tag types. For example, the
physical style tag always means bold, but the logical tag can be bold
or some other browser interpretation of strong.

In this example, we create a custom tag, filterhtml, that allows us to see our
particular browser’s interpretation of these logical style tags. We accomplish this task
by creating a custom tag that filters out the HTML code, converting it to regular text,
thus preventing the browser from interpreting it as HTML code. We are now able to
see the actual unrendered HTML code alongside its rendered version, which is con-
venient for demonstration of this idea.

We define a tag handler class HtmlFilterTag, shown in Listing 8.1, which extends
the SimpleTagSupport class. In its doTag method we pass a newly created
StringWriter to the getJspBody().invoke(stringWriter) method and
buffer up the output of the JSP content that the filterhtml tag surrounds. We extract
the output from the StringWriter, modify it using the ServletUtilities.fil-
ter method, shown in Listing 8.2, and send the modified output to the client. We
describe the tag to the container using the TLD csajsp-taglib-adv.tld. The excerpt of the
htmlfilter tag TLD description is shown in Listing 8.3. The JSP page using the
htmlfilter tag is shown in Listing 8.4. The result is shown in Figure 8–1.

Listing 8.1 HtmlFilterTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import coreservlets.ServletUtilities;

/** Tag that replaces special HTML characters (like less than
 * and greater than signs) with their HTML character entities.
 */
public class HtmlFilterTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {

Chapter 8 ■ Tag Libraries: Advanced Features382

 // Buffer tag body's output
 StringWriter stringWriter = new StringWriter();
 getJspBody().invoke(stringWriter);

 // Filter out any special HTML characters
 // (e.g., "<" becomes "<")
 String output =
 ServletUtilities.filter(stringWriter.toString());

 // Send output to the client
 JspWriter out = getJspContext().getOut();
 out.print(output);
 }
}

Listing 8.2 Excerpt from ServletUtilities.java

package coreservlets;
import javax.servlet.*;
import javax.servlet.http.*;

/** Some simple time-savers. Note that most are static methods.
 */
public class ServletUtilities {

 /** Replaces characters that have special HTML meanings
 * with their corresponding HTML character entities.
 */

public static String filter(String input) {
 if (!hasSpecialChars(input)) {
 return(input);
 }
 StringBuffer filtered = new StringBuffer(input.length());
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 switch(c) {
 case '<': filtered.append("<"); break;
 case '>': filtered.append(">"); break;
 case '"': filtered.append("""); break;
 case '&': filtered.append("&"); break;
 default: filtered.append(c);
 }
 }

Listing 8.1 HtmlFilterTag.java (continued)

8.2 Example: HTML-Filtering Tag 383

 return(filtered.toString());
 }

 private static boolean hasSpecialChars(String input) {
 boolean flag = false;
 if ((input != null) && (input.length() > 0)) {
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 switch(c) {
 case '<': flag = true; break;
 case '>': flag = true; break;
 case '"': flag = true; break;
 case '&': flag = true; break;
 }
 }
 }
 return(flag);
 }
}

Listing 8.3 Excerpt from csajsp-taglib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>

 <tag>
 <description>
 Converts special HTML characters such as less than
 and greater than signs to their corresponding HTML
 character entities such as < and >.
 </description>
 <name>filterhtml</name>
 <tag-class>coreservlets.tags.HtmlFilterTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>

</taglib>

Listing 8.2 Excerpt from ServletUtilities.java (continued)

Chapter 8 ■ Tag Libraries: Advanced Features384

Listing 8.4 html-filter.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>HTML Logical Character Styles</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>HTML Logical Character Styles</H1>
Physical character styles (B, I, etc.) are rendered consistently
in different browsers. Logical character styles, however,
may be rendered differently by different browsers.
Here's how your browser renders the HTML 4.0 logical character
styles:
<P>
<TABLE BORDER=1 ALIGN="CENTER">
<TR CLASS="COLORED"><TH>Example<TH>Result

<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>
<TR>
<TD><PRE><csajsp:filterhtml>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>
</csajsp:filterhtml></PRE>

<TD>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>

</TABLE>
</BODY></HTML>

8.3 Assigning Dynamic Values to Tag Attributes 385

Figure 8–1 The HTML code on the left is shown unrendered by the browser because it
was surrounded with the filterhtml tag, which converted the HTML tags to its text
equivalent.

8.3 Assigning Dynamic Values
to Tag Attributes

In Section 7.3 (Assigning Attributes to Tags), we discussed how to add attribute sup-
port to your custom tags. However, because of our setup we were limited to static
strings as the values the JSP page was allowed to provide for those attributes. In this
section, we show you how to change that so the author of the JSP page is free to pass
dynamic values to your tag. In other words, we would like to be able to call our cus-
tom tag with a construct like the following:

<prefix:name attribute1="${bean.value}"
attribute2="<%= bean.getValue() %>" />

Dynamic Attribute Values: Tag Handler Class
There is nothing that you need to do differently in the tag handler class for dynamic
values than if the values for the attributes were just static strings placed into the
page during development time. As far as the tag handler class is concerned, there is
no difference. You still need to provide a setter method for the attribute in the form

Chapter 8 ■ Tag Libraries: Advanced Features386

of setXxx(String value), where Xxx is the name of the attribute with the first
character capitalized. So, if we have attribute1 as our attribute in the tag, we
would have to provide a setter method in the tag handler class like the following:

public void setAttribute1(String value1) {
doSomethingWith(value1);

}

As before, the most common thing to do with the actual value in the setter
method is to store it in a private instance variable for later use.

Dynamic Attribute Values:
Tag Library Descriptor

As before, each attribute needs to be declared inside the TLD. However, because we
want to allow the JSP author to specify dynamic (or runtime) expressions as values
for the attributes, we must specify rtexprvalue to be true, like in the following:

<tag>
<description>...</description>
<name>mytag</name>
<tag-class>package.TagHandler</tag-class>
<body-content>...</body-content>
<attribute>

<description>...</description>
<name>attribute1</name>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Dynamic Attribute Values: JSP File
As before, the JSP page has to declare the tag library using the taglib directive.
This is done in the following form:

<%@ taglib uri="..." prefix="..." %>

The usage of the tag is very much the same, except now you are able to specify JSP
expressions as values for the attributes that are declared in the TLD with rtex-
prvalue of true. Note, however, that this does not mean that only JSP expressions
are allowed to be placed as values for those attributes. Good old static string values,
placed there during the authoring of the page, are still allowed. Also note that unlike
the content of the tag body, the values of the attributes that accept runtime content
are allowed to be JSP scripting expressions andJSP EL. In other words, the following
tag, which combines JSP EL and JSP scripting expression, is perfectly legal.

8.4 Example: Simple Looping Tag 387

<prefix:name attribute1="${bean.value}"
attribute2="<%= bean.getValue() %>" />

8.4 Example: Simple Looping Tag

In this example, we create a simple for loop tag that outputs its tag body the num-
ber of times that the count attribute specifies. The count attribute is declared to
accept runtime expressions, so we let its value be a JSP scripting expression that pro-
duces a random number every time the page is accessed.

Listing 8.5 shows the CoinBean.java class that produces a result of a random coin
flip. Because we are allowed to use JSP EL inside the tag body, we use it to simulate
a random number of coin flips inside the for loop by invoking its getFlip()
method through the JSP EL notation ${coin.flip}. This is exhibited in the sim-

ple-loop-test.jsp page, shown in Listing 8.8.
The ForTag.java class, shown in Listing 8.6, has a setCount method that stores

the randomly produced value of the count attribute in the instance variable count.
This value is then used in the doTag method as the number of times to loop the
invocation code that outputs the tag body. Listing 8.7 shows the SimpleLoopTest.java

class, which is the servlet mapped to /simpleLoopTest URL pattern in web.xml

(Listing 8.9). The servlet creates an instance of the CoinBean class and stores it as a
request scope attribute. The request is then dispatched to /WEB-INF/results/sim-

ple-loop-test.jsp, shown in Listing 8.8. Listing 8.10 shows an excerpt from csa-

jsp-taglib-adv.tld, which defines the for tag. The result is shown in Figure 8–2.

Listing 8.5 CoinBean.java

package coreservlets;
import java.io.*;

/** Bean that represents a coin. It has a single method that
 * simulates a random coin flip.
 */
public class CoinBean implements Serializable {

public String getFlip() {
 if (Math.random() < 0.5) {
 return("Heads");
 } else {
 return("Tails");
 }
 }
}

Chapter 8 ■ Tag Libraries: Advanced Features388

Listing 8.6 ForTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Simple for loop tag. It outputs the its tag body the
 * number of times specified by the count instance
 * variable.
 */
public class ForTag extends SimpleTagSupport {
 private int count;

public void setCount(int count) {
 this.count = count;
 }
 public void doTag() throws JspException, IOException {
 for(int i=0; i<count; i++) {
 getJspBody().invoke(null);
 }
 }
}

Listing 8.7 SimpleLoopTest.java

package coreservlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet that creates a CoinBean bean, stores it
 * in the request scope as an attribute, and forwards the
 * request on to a JSP page. This servlet is used to
 * demonstrate a simple looping tag.
 */
public class SimpleLoopTest extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 CoinBean coin = new CoinBean();
 request.setAttribute("coin", coin);
 String address =
 "/WEB-INF/results/simple-loop-test.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

8.4 Example: Simple Looping Tag 389

Listing 8.8 simple-loop-test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Simple Loop Test</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Simple Loop Test</H1>
<P>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>
<H2>A Very Important List</H2>

<csajsp:for count="<%=(int)(Math.random()*10)%>">
 Blah

</csajsp:for>

<H2>Some Coin Flips</H2>

<csajsp:for count="<%=(int)(Math.random()*10)%>">
 ${coin.flip}
</csajsp:for>

</BODY></HTML>

Listing 8.9 Excerpt from web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>SimpleLoopTester</servlet-name>
 <servlet-class>coreservlets.SimpleLoopTest</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleLoopTester</servlet-name>
 <url-pattern>/simpleLoopTest</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 8 ■ Tag Libraries: Advanced Features390

Listing 8.10 Excerpt from csajsp-taglib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>
 <tag>
 <description>
 Loops specified number of times.
 </description>
 <name>for</name>
 <tag-class>coreservlets.tags.ForTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <description>
 Number of times to repeat body.
 </description>
 <name>count</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

Figure 8–2 Result of simple loop test.
The number of times the word “blah”
displays, as well as the number of
simulated coin flips, is random.

8.5 Assigning Complex Objects as Values to Tag Attributes 391

8.5 Assigning Complex Objects as
Values to Tag Attributes

In Section 8.3 (Assigning Dynamic Values to Tag Attributes), we showed how to set
up your custom tag to accept dynamic values from the JSP page. After that setup, we
are able to pass JSP EL as well as JSP scripting expressions as values of the tag
attributes, like the following:

<prefix:name attribute1="${bean.value}"
attribute2="<%= bean.getValue() %>" />

However, the value produced by ${bean.value} was still just a string. What if
you wanted to pass a Collection of Orders or some other complex object struc-
ture? What would we have to change to accommodate that?

Luckily, the answer to this question is: very little.

Complex Dynamic Attribute
Values: Tag Handler Class

We still need to provide the setter for the attribute as before. However, the type of
the argument in the setter would now be the complex object type instead of String,
like the following:

public void setAttribute1(SomeComplexObject value1) {
doSomethingWith(value1);

}

That’s it! The container takes care of the rest. Again, as before, the most common
thing to do with the actual value in the setter method is to store it in a private
instance variable for later use.

Complex Dynamic Attribute Values:
Tag Library Descriptor

The TLD stays the same as in Section 8.3 (Assigning Dynamic Values to Tag
Attributes), making sure to provide the rtexprvalue element with a value of
true, as follows:

<tag>
<description>...</description>
<name>mytag</name>

Chapter 8 ■ Tag Libraries: Advanced Features392

<tag-class>package.TagHandler</tag-class>
<body-content>...</body-content>
<attribute>

<description>...</description>
<name>attribute1</name>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Complex Dynamic Attribute Values: JSP File
As before, the JSP page has to declare the tag library using the taglib directive.
This is done in the following form:

<%@ taglib uri="..." prefix="..." %>

The usage of the tag is very much the same as when we had dynamic values that were
strings.

<prefix:name attribute1="${bean.value}"
attribute2="<%= bean.getValue() %>" />

However, you must make sure that the type of the runtime expression is either the
type declared in the setter method’s argument or a subtype of that type. For example,
if the setter method looks like this:

public void setAttribute1(SuperClass value1) {
doSomethingWith(value1);

}

Then, inside the JSP page, the expression ${bean.value} must evaluate to
either an instance of SuperClass or an instance of any class that inherits from
SuperClass. If the expression ${bean.value} evaluates to anything else, the
container-generated servlet code, produced as a result of this JSP page, will not com-
pile because of the type mismatch.

8.6 Example: Table Formatting Tag 393

8.6 Example: Table Formatting Tag

In this example, we list the three most recent swimming world records, as listed in
the FINA (Fédération Internationale de Natation) database. To list the records, we
employ the use of a custom table-formatting tag that lets the JSP author pass the
entire record set to the tag as a two-dimensional array object.

We start off with the ShowRecords servlet, shown in Listing 8.11. This servlet is
mapped inside web.xml (Listing 8.12) to the /showRecords URL. The servlet
retrieves the records to be displayed using the WorldRecords class, shown in List-
ing 8.13. We store the records as a request scope attribute and forward the request to
the show-records.jsp page shown in Listing 8.14. The show-records.jsp page utilizes
the makeTable tag to display the records in a neatly formatted table. The tag han-
dler class for this tag is MakeTableTag, which is shown in Listing 8.15. We declared
the makeTable tag in the csajsp-taglib-adv.tld as shown in Listing 8.16. The result
is shown in Figure 8–3.

Listing 8.11 ShowRecords.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet retrieves the records, stores them in the request
 * scope, and forwards the request to show-records.jsp.
 */
public class ShowRecords extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 Object[][] records = WorldRecords.getRecentRecords();
 request.setAttribute("records", records);
 String address = "/WEB-INF/results/show-records.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Chapter 8 ■ Tag Libraries: Advanced Features394

Listing 8.12 Excerpt from web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>RecordDisplayer</servlet-name>
 <servlet-class>coreservlets.ShowRecords</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>RecordDisplayer</servlet-name>
 <url-pattern>/showRecords</url-pattern>
 </servlet-mapping>
</web-app>

Listing 8.13 WorldRecords.java

package coreservlets;

/** This class simulates the retrieval of world records
 * from the FINA database.
 */
public class WorldRecords {

public static Object[][] getRecentRecords() {
 Object[][] records = {
 { "Event", "Name", "Time" },
 { "400 IM", "Michael Phelps", "4:08.25"},
 { "100 Br", "Lindsay Hall", "1:05.08"},
 { "200 IM", "Katie Hoff", "2:09.71"}};
 return(records);
 }
}

8.6 Example: Table Formatting Tag 395

Listing 8.14 show-records.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Recent World Records</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Recent World Records</H1>
Following are the three most recent swimming
world records, as listed in the FINA database.
<P>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>
<CENTER>
<csajsp:makeTable rowItems="${records}"
 headerClass="COLORED" />
</CENTER>
</BODY></HTML>

Listing 8.15 MakeTableTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Tag handler class for the makeTable tag. It builds an
 * HTML table and outputs the records of the two-dimensional
 * array provided as one of the attributes of the tag in
 * the JSP page.
 */
public class MakeTableTag extends SimpleTagSupport {
private Object[][] rowItems;

 private String headerClass;
 private String bodyClass;

public void setRowItems(Object[][] rowItems) {
 this.rowItems = rowItems;
 }

Chapter 8 ■ Tag Libraries: Advanced Features396

 public void setHeaderClass(String headerClass) {
 this.headerClass = headerClass;
 }

 public void setBodyClass(String bodyClass) {
 this.bodyClass = bodyClass;
 }

 public void doTag() throws JspException, IOException {
 if (rowItems.length > 0) {
 JspContext context = getJspContext();
 JspWriter out = context.getOut();
 out.println("<TABLE BORDER=1>");
 Object[] headingRow = rowItems[0];
 printOneRow(headingRow, getStyle(headerClass), out);
 for(int i=1; i<rowItems.length; i++) {
 Object[] bodyRow = rowItems[i];
 printOneRow(bodyRow, getStyle(bodyClass), out);
 }
 out.println("</TABLE>");
 }
 }

}
 private void printOneRow(Object[] columnEntries,
 String style,
 JspWriter out)
 throws IOException {
 out.println(" <TR" + style + ">");
 for(int i=0; i<columnEntries.length; i++) {
 Object columnEntry = columnEntries[i];
 out.println(" <TD>" + columnEntry + "</TD>");
 }
 out.println(" </TR>");
 }

 private String getStyle(String className) {
 if (className == null) {
 return("");
 } else {
 return(" CLASS=\"" + headerClass + "\"");
 }
 }
}

Listing 8.15 MakeTableTag.java (continued)

8.6 Example: Table Formatting Tag 397

Listing 8.16 Excerpt from csajsp-taglib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>

 <tag>
 <description>
 Given an array of arrays, puts values into a table
 </description>
 <name>makeTable</name>
 <tag-class>coreservlets.tags.MakeTableTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <description>
 An array of arrays. The top-level arrays
 represents the rows, the sub-arrays represent
 the column entries.
 </description>
 <name>rowItems</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <description>
 Style sheet class name for table header.
 </description>
 <name>headerClass</name>
 <required>false</required>
 </attribute>
 <attribute>
 <description>
 Style sheet class name for table body.
 </description>
 <name>bodyClass</name>
 <required>false</required>
 </attribute>
 </tag>
</taglib>

Chapter 8 ■ Tag Libraries: Advanced Features398

Figure 8–3 Result of show-records.jsp.

8.7 Creating Looping Tags

In Section 8.1 (Manipulating Tag Body), we discussed how to manipulate the content
of the tag body. That approach boils down to buffering up all of the output of the JSP
content surrounded by the tag, modifying it in some way, and sending the modified
version to the client. But what if we wanted to control only a small part of the tag
body with the rest of it unchanged?

Consider the following typical Java looping structure. In it, we use a for loop to
iterate through an array of strings.

for (int i; i < someArray.length; i++) {
System.out.print("Object at position " + i + "is: ");
System.out.print(someArray[i]);

}

The looping index variable, i, is what makes each iteration through the loop
unique. The for loop construct exposes the looping index i to its body. However, no
code outside of the for loop body is able to access i because its scope is limited to
the body of the loop, delimited by the curly braces.

8.8 Example: ForEach Tag 399

This construct is very useful inside a JSP page as well. In this case, the looping struc-
ture would be the custom tag. This tag would create some bean with appropriate values
and pass it to the JSP content inside the body of the tag. This is done inside the doTag
method with the use of the tag body scope attribute. The tag body scope is similar
to the request or application scope in nature, except that its attributes are only
visible to the tag body. Any JSP code outside of the custom tag’s beginning and ending
elements would not be able to access it. You use the following code inside the doTag
method to place an object as an attribute of the tag body scope:

getJspContext().setAttribute(key, object);

You then use JSP EL inside the body of the custom tag to access this attribute.
This is no different than accessing any other scoped bean. You just have to remember
that this attribute is not available outside the confines of the tag body.

<prefix:custom-tag>
some text ${someBean.someValue}

</prefix:custom-tag>

When creating a looping tag, it is also very common to provide the author of the
JSP page with an attribute they can set, which lets them pass the name of the
attribute they will later access in the tag body; that is, let them specify the string
value of the key argument that gets passed into getJspContext().setAt-
tribute(key, object). For example:

<mytags:for beanKeyValue="arrayValue" iterateOver="${someArray}">
Value is: ${arrayValue}

</mytags:for>

Section 8.8 (Example: ForEach Tag) shows an example of creating a foreach
looping tag that utilizes this approach.

8.8 Example: ForEach Tag

In this example, we create a forEach custom tag that can iterate over arrays of any
objects. The array is passed to the tag handler class through the tag’s items
attribute. Because we are interested in outputting the contents of the array to the
page, we let the users of our tag (i.e., the page authors) designate a key through
which they can refer to the current element in the loop iteration inside the body of
the tag. This feature makes the tag very generic in nature because we are no longer
dictating how the output should look. We are not sending back any HTML from the
tag, just the values. The page authors are free to represent the collection of data in
the array any way they choose.

Chapter 8 ■ Tag Libraries: Advanced Features400

To demonstrate the usage of the forEach tag, we create a servlet called
LoopTest, shown in Listing 8.17. This servlet creates two arrays. The first is a
one-dimensional array containing names of J2EE Web servers. The second is a
two-dimensional array we used in Section 8.6 (Example: Table Formatting Tag), con-
taining recent world swimming records from the FINA database. We use the
getRecentRecords method of the WorldRecords class (Listing 8.13) to popu-
late the two-dimensional array. Once the arrays are created, they are placed into the
request scope, and the request is forwarded onto the loop-test.jsp page, shown in
Listing 8.18. The JSP page uses the forEach tag to loop through the two arrays.
Note that in the case of the two-dimensional array, we are able to nest the looping
tags just like we would in regular Java code. Using the var attribute of the forEach
tag, we assign a key that we use to refer to the current element of the array inside the
body of the tag as the elements of the array are being looped over.

The tag handler class of the forEach tag is implemented by the ForEachTag
class, shown in Listing 8.19. The TLD definition of the forEach tag is listed in
csajsp-taglib-adv.tld, shown in Listing 8.20. The servlet declaration and mapping is
shown in the excerpt of the web.xml file of Listing 8.21. The resultant page is shown
in Figure 8–4.

Listing 8.17 LoopTest.java

package coreservlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** This servlet creates two arrays and stores them in the
 * request scope as attributes and forwards the request
 * to the loop-test.jsp page.
 */
public class LoopTest extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String[] servers =
 {"Tomcat", "Resin", "JRun", "WebLogic",
 "WebSphere", "Oracle 10g", "JBoss" };
 request.setAttribute("servers", servers);
 Object[][] records = WorldRecords.getRecentRecords();
 request.setAttribute("records", records);
 String address = "/WEB-INF/results/loop-test.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

8.8 Example: ForEach Tag 401

Listing 8.18 loop-test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Loop Test</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Loop Test</H1>
<P>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>
<H2>Some Java-Based Servers</H2>

<csajsp:forEach items="${servers}" var="server">
 ${server}
</csajsp:forEach>

<H2>Recent World Records</H2>
<TABLE BORDER=1>
<csajsp:forEach items="${records}" var="row">
 <TR>

<csajsp:forEach items="${row}" var="col">
 <TD>${col}</TD>

</csajsp:forEach>
 </TR>
</csajsp:forEach>
</TABLE>
</BODY></HTML>

Listing 8.19 ForEachTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** This class is a tag handler class for the forEach custom
 * tag. It is able to iterate over an array of objects.
 */

Chapter 8 ■ Tag Libraries: Advanced Features402

public class ForEachTag extends SimpleTagSupport {
 private Object[] items;
 private String attributeName;

 public void setItems(Object[] items) {
 this.items = items;
 }

public void setVar(String attributeName) {
 this.attributeName = attributeName;
 }

 public void doTag() throws JspException, IOException {
 for(int i=0; i<items.length; i++) {
 getJspContext().setAttribute(attributeName, items[i]);
 getJspBody().invoke(null);
 }
 }
}

Listing 8.20 Excerpt from csajsp-taglib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>

 <tag>
 <description>
 Loops down each element in an array
 </description>
 <name>forEach</name>
 <tag-class>coreservlets.tags.ForEachTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <description>
 The array of elements.
 </description>

Listing 8.19 ForEachTag.java (continued)

8.8 Example: ForEach Tag 403

 <name>items</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <description>
 The name of the scoped variable to which
 each entry is assigned.
 </description>
 <name>var</name>
 <required>true</required>
 </attribute>
 </tag>
</tablib>

Listing 8.21 Excerpt from web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <servlet>
 <servlet-name>LoopTester</servlet-name>
 <servlet-class>coreservlets.LoopTest</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>LoopTester</servlet-name>
 <url-pattern>/loopTest</url-pattern>
 </servlet-mapping>
</web-app>

Listing 8.20 Excerpt from csajsp-taglib-adv.tld (continued)

Chapter 8 ■ Tag Libraries: Advanced Features404

Figure 8–4 Resultant view of the page that uses the foreach custom tag.

8.9 Creating Expression
Language Functions

In Section 7.7 (Example: Debug Tag), we showed an example of creating a debug
tag. This simple tag surrounds some debugging information inside the JSP page. If
the debug request parameter is present, the contents of the debug tag are allowed
to be processed and output to the JSP page. This provides a very convenient mecha-
nism for outputting debugging information while developing a Web page.

There is, however, one pretty significant limitation to our debug tag. As with all
custom tags based on the SimpleTag API, the body of the tag is not allowed to con-
tain any JSP scripting. The only way we can output something is through JSP EL,
which requires that the object has bean-like getter methods. No doubt, we can create

8.9 Creating Expression Language Functions 405

such a bean in the doTag method of the debug tag handler class, but this would
require us to update the tag handler class code every time we need to output some
new debugging information or modify the current output. Furthermore, we would
like to reuse the same debug tag on multiple JSP pages. Placing the information we
want to see for one page into the tag handler class would require us to create multi-
ple debug tags for different JSP pages. In other words, the debug tag would be very
tightly coupled with the particular JSP page.

There are two sensible solutions to this dilemma. One would involve the usage of
nested custom tags. The nested custom tag would output the debugging information
specific to one JSP page. If the inner custom tag does not need to communicate with
the outer custom tag, there wouldn’t be anything different you would need to do to
create it from what we discussed throughout Chapter 7 (Tag Libraries: The Basics).
You still need to implement a tag handler class, declare the tag in some TLD, and use
it inside the JSP page. The situation where the inner tag needs to communicate with
the outer tag and vice versa is discussed in Section 8.11 (Handling Nested Custom
Tags).

The second solution, and the topic of this section, is to use an EL function. EL
functions are a new feature to the JSP specification 2.0. EL functions allow the
developer to call a static method inside the JSP page, but instead of using JSP script-
ing to do it, which is illegal inside the tag body, EL functions allow the developer to
use EL notation to invoke the function. Inside the JSP page, an EL function invoca-
tion would look like the following:

${prefix:someFunction(package.ClassName argument)}

The steps for creating an EL function are very similar to those required to create a
custom Java-based tag.

1. Create a class with a public static method. This class should
be placed into the WEB-INF/classes directory just like any servlet, filter,
and so on. If this class has to come as part of a JAR file, the JAR file
has to be placed inside the WEB-INF/lib directory. The return type of
the method can be any type, but usually it is either a String or void.

public class SomeClass {
public static void someMethod() {...}

}

2. Declare the method inside a TLD file. This step is very similar to
declaring a tag inside a TLD file. The fully qualified class name and
one of its methods gets mapped to some name that will be used inside
the JSP page to invoke that method. However, instead of the tag ele-
ment, which declares a tag, EL functions use the function element
and its related elements as follows:

Chapter 8 ■ Tag Libraries: Advanced Features406

<function>
<name>run</name>
<function-class>somePackage.SomeClass</function-class>
<function-signature>void someMethod()</function-signature>

</function>

There are a couple of things that are important to emphasize here.
The value of the function-class element must be the fully quali-
fied name of the Java class that implements the method. The value of
the function-signature element should contain the signature of
the method with all the specified types using their fully qualified class
notation. In other words, if someMethod takes an argument of type
String, the TLD must use java.lang.String to declare it, as
follows:

...
<function-signature>

void someMethod(java.lang.String)
</function-signature>
...

Core Warning

The values of function-class and function-signature have to
contain fully qualified Java classes.

3. Declare tag library inside the JSP page. This step is identical to
declaring a TLD that contains declarations of custom tags exclusively.
Just like before you use the taglib directive, assign a prefix to be
used throughout the JSP page. For example:

<%@ taglib prefix="myfunc" uri="someURI" %>

4. Use JSP EL to invoke the method. The invocation of the method is
done in the following form:

${myfunc:run()}

The myfunc part is the prefix that comes from the taglib declara-
tion mentioned in Step 3. The run part comes from the name element
inside the function element declaration in the TLD. Note that the
function name used inside the JSP page does not have to be the same
as the method name inside the implementing class.

8.10 Example: Improved Debug Tag 407

8.10 Example: Improved Debug Tag

In Section 7.7 (Example: Debug Tag), we introduced a debug tag. To review, the
debug tag lets us output part of the JSP page designated as debugging information.
If one of the request parameters sent to the page is debug, the contents of the JSP
page containing the debugging information, which are surrounded by the debug tag,
are allowed to be output to the client. If no debug request parameter is present, the
page executes without outputting the debugging information.

However, because the debugging information is inside a custom tag, we are very
limited in the type of content we are allowed to output. Namely, we are only allowed to
use JSP EL. For example, we can’t use JSP scripting to invoke a utility method. How-
ever, now that we know how to use JSP EL functions, we can get around this limitation.

The debug tag itself does not need to be changed at all. Therefore, in this exam-
ple, the DebugTag class, shown in Listing 8.22, remains unchanged. Instead, we
define a Util class (Listing 8.23) with a public static method called informa-
tion. We map this method inside the csajsp-taglib-adv.tld file (Listing 8.24) to a JSP
EL function named info. Then, we are able to use JSP EL inside the debug.jsp
page (Listing 8.25) to invoke the info function as part of the debug tag body. Fig-
ure 8–5 shows the result of invoking the debug.jsp page with a number of request
parameters.

Listing 8.22 DebugTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.http.*;

/** DebugTag outputs its body if the request parameter
 * 'debug' is present and skips it if it's not.
 */
public class DebugTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 PageContext context = (PageContext)getJspContext();
 HttpServletRequest request =
 (HttpServletRequest)context.getRequest();
 // Output body of tag only if debug param is present.
 if (request.getParameter("debug") != null) {
 getJspBody().invoke(null);
 }
 }
}

Chapter 8 ■ Tag Libraries: Advanced Features408

Listing 8.23 Util.java

package coreservlets.jsp;
import java.util.Enumeration;
import javax.servlet.http.HttpServletRequest;

/** Utility class whose method is used as an JSP EL function. */
public class Util {

public static String information(HttpServletRequest request) {
 String result = "";
 result += "Agent Header: " + request.getHeader("User-Agent");
 result += "
";
 result += "Parameters:
";
 Enumeration paramNames = request.getParameterNames();
 while (paramNames.hasMoreElements()) {
 String paramName = (String) paramNames.nextElement();
 result += paramName + "
";
 }
 return result;
 }
}

Listing 8.24 Excerpt from csajsp-tablib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>

 <tag>
 <description>Conditionally outputs debug info</description>
 <name>debug</name>
 <tag-class>coreservlets.tags.DebugTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>

8.10 Example: Improved Debug Tag 409

<function>
 <name>info</name>
 <function-class>coreservlets.jsp.Util</function-class>
 <function-signature>
 java.lang.String
 information(javax.servlet.http.HttpServletRequest)
 </function-signature>
 </function>
</taglib>

Listing 8.25 debug.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some Hard-to-Debug Page</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Some Hard-to-Debug Page</H1>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>
Top of regular page. Blah, blah, blah.
Yadda, yadda, yadda.
<csajsp:debug>
<H2>Debug Info:</H2>

-Remote Host: ${pageContext.request.remoteHost}

-Session ID: ${pageContext.session.id}

-${csajsp:info(pageContext.request)}

</csajsp:debug>
<P>
Bottom of regular page. Blah, blah, blah.
Yadda, yadda, yadda.
</BODY></HTML>

Listing 8.24 Excerpt from csajsp-tablib-adv.tld (continued)

Chapter 8 ■ Tag Libraries: Advanced Features410

Figure 8–5 Result of invoking the debug.jsp page, specifying the debug request
parameter.

8.11 Handling Nested Custom Tags

So far we have seen custom tags whose bodies contained ordinary JSP content. Of
course, as discussed in Section 7.5 (Including Tag Body in the Tag Output), we take
care to use only JSP EL and EL functions in the tag body. However, the tag body of a
custom tag can also contain other custom tags, as follows:

<prefix:tagOuter>
<prefix:tagInner>
...
</prefix:tagInner>

</prefix:tagOuter>

8.11 Handling Nested Custom Tags 411

Note that, just like in XML, the inner tag has to be closed before the outer tag.
There is really nothing different about constructing these tags if the inner tag and
outer tags don’t depend on each other; that is, the inner tag can appear some other
place without the presence of the outer tag and vice versa, and neither tag needs to
share data with the other. However, frequently, these tags need to interact in some
way. The SimpleTag API provides two methods that let an inner tag get a hold of
the outer tag. The first method is getParent(). It is called on the instance of the
inner tag. It returns an object of type JspTag, which can be cast to the type of the
outer tag’s handler class. If this method is called on the most outer tag in the hierar-
chy, it returns null.

Although you can keep calling the getParent method over and over until you
either reach the tag instance you are seeking or null, if at the top of the tag hierar-
chy, the SimpleTag API provides another convenient method that lets you avoid
repeat calls with getParent(). This is a static method that is provided as part of
the SimpleTagSupport class called findAncestorWithClass(JspTag
fromTag, Class toBeMatchedClass). This method starts searching the hier-
archy of tags from a given tag instance, fromTag, looking at its parent tag up until it
finds a tag instance that matches the type of toBeMatchedClass. If the search
takes it all the way to the top of the hierarchy with no results, it returns null. If this
method finds the right instance of the tag class, it returns it as a JspTag instance,
which needs to be cast to the proper type. There is another advantage to using the
findAncestorWithClass method over the getParent method. With the get-
Parent method, you need to anticipate a ClassCastException because you
don’t know the parent tag’s type in advance. With findAncestorWithClass, how-
ever, this is not an issue. If it returns anything other than null, you are guaranteed
that that you can successfully cast down the instance it returns using the class type
that was passed in as a second argument to the findAncestorWithClass method.

So, if you are working inside of some inner tag, you have a way to get at the outer
tag instance. What about the other way around? What method does the API provide
to get at the inner tag from the outer tag? None.

If you remember our discussion about the tag life cycle from Section 7.1 (Tag
Library Components), this should make perfect sense. Remember that a new
instance of the tag handler class is created for every tag occurrence on the page. This
rule means that after completing the instantiation of the outer tag, the inner tag
instance doesn’t yet exist. It would therefore be impossible to create a method that
gets a hold of an instance that hasn’t been created yet.

All these reasons are great, but the question still remains: How do we get the
outer tags to communicate with the inner tags? The answer is to store some informa-
tion in the outer tag that the inner tag can later retrieve and act on, as follows:

public class OuterTag extends SimpleTagSupport {
 public void setSomeValue(SomeClass arg) { ... }
 public SomeClass getSomeValue() { ... }

Chapter 8 ■ Tag Libraries: Advanced Features412

 public void doTag() { ... }
}

public class InnerTag extends SimpleTagSupport {
 public int doTag() throws JspException, IOException {
 OuterTag parent =
 (OuterTag)findAncestorWithClass(this, OuterTag.class);
 if (parent == null) {
 throw new JspTagException("nesting error");
 }

SomeClass value = parent.getSomeValue();
 DoSomethingWithValue(value);
 }
 ...
}

Similarly, an inner tag can affect other inner tags by getting a hold of an instance
of the outer tag and setting some value in it that can later be read by some other
inner tag and dealt with accordingly.

8.12 Example: If-Then-Else Tag

In this example, we are going to create three custom tags: if, then, and else.
Obviously, these tags have to work together to produce a meaningful result. The if
tag has an attribute, test, that evaluates to true or false. This condition is stored
in an instance variable of the IfTag class, shown in Listing 8.26, for which we pro-
vide the required setter method as well as the getter method. These methods are
used by the nested tag handler classes.

The then tag gets a hold of the if tag instance, acquires the test attribute
value, and allows its body to be processed if the value is true. The else tag also gets
a hold of the if tag instance and reads the test attribute value, but allows its body
to be processed if the value is false. In both ThenTag and ElseTag classes, shown
in Listing 8.27 and Listing 8.28, we make sure that the result of the getParent
method is actually an instance of the IfTag class. If the call to the getParent
method does not return an instance of the IfTag class, a ClassCastException
will occur. This means that the author of the JSP page made a mistake in the nesting
order. We catch the ClassCastException and rethrow it as a JspTagExcep-
tion with the appropriate message. Likewise, the getParent method will return
null if either the then or the else tags are outside of the if tag. Again, in such a
case, we throw a JspTagException.

8.12 Example: If-Then-Else Tag 413

Note that in our example we use the getParent method and not the find-
AncestorWithClass method. In the case of the if-then-else construct, it
is not appropriate to have other custom tags in the tag hierarchy between either
the then or else tags and the if tag. If we used the findAncestorWith-
Class method, it would return an instance of the if tag even if it wasn’t a direct
parent of either the then or else tags. Therefore, its use in our example would
be inappropriate.

The declaration of these tags is inside the csajsp-tablib-adv.tld file shown in List-
ing 8.29. We use the if-test.jsp file, shown in Listing 8.30, to demonstrate their use.
The result is shown in Figure 8–6.

Listing 8.26 IfTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Tag handler class for the if tag. It relies on the
 * required 'test' attribute and stores the evaluated
 * condition in the test instance variable to be later
 * accessed by the ThenTag.java and ElseTag.java.
 */
public class IfTag extends SimpleTagSupport {
 private boolean test;

 public void setTest(boolean test) {
 this.test = test;
 }

public boolean getTest() {
 return(test);
 }

 public void doTag() throws JspException, IOException {
 getJspBody().invoke(null);
 }
}

Chapter 8 ■ Tag Libraries: Advanced Features414

Listing 8.27 ThenTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Tag handler class for the then tag. It gets a hold of
 * the IfTag instance and processes its body if the value
 * test attribute of the IfTag is true. It also throws
 * a JspTagException if the parent of this tag is anything
 * other than an instance of the IfTag class.
 */
public class ThenTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 // Get parent tag (if tag)
 IfTag ifTag = null;
 try {
 ifTag = (IfTag)getParent();
 }
 catch (ClassCastException cce) {
 String msg = "Error: 'then' must be inside 'if'.";
 throw new JspTagException(msg);
 }
 if (ifTag != null) {
 // Decide whether to output body of then
 if (ifTag.getTest()) {
 getJspBody().invoke(null);
 }
 } else {
 String msg = "Error: 'then' must be inside 'if'.";
 throw new JspTagException(msg);
 }
 }
}

Listing 8.28 ElseTag.java

package coreservlets.tags;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

8.12 Example: If-Then-Else Tag 415

/** Tag handler class for the else tag. It gets a hold of
 * the IfTag instance and processes its body if the value
 * test attribute of the IfTag is false. It also throws
 * a JspTagException if the parent of this tag is anything
 * other than an instance of the IfTag class.
 */
public class ElseTag extends SimpleTagSupport {
 public void doTag() throws JspException, IOException {
 // Get parent tag (if tag)
 IfTag ifTag = null;
 try {
 ifTag = (IfTag)getParent();
 }
 catch (ClassCastException cce) {
 String msg = "Error: 'else' must be inside 'if'.";
 throw new JspTagException(msg);
 }
 if (ifTag != null) {
 // Decide whether to output body of else
 if (!ifTag.getTest()) {
 getJspBody().invoke(null);
 }
 } else {
 String msg = "Error: 'else' must be inside 'if'.";
 throw new JspTagException(msg);
 }
 }
}

Listing 8.29 Excerpt from csajsp-taglib-adv.tld

<?xml version="1.0" encoding="UTF-8" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>csajsp-taglib-adv</short-name>
 <uri>http://coreservlets.com/csajsp-taglib-adv</uri>

Listing 8.28 ElseTag.java (continued)

Chapter 8 ■ Tag Libraries: Advanced Features416

 <tag>
 <description>If tag</description>
 <name>if</name>
 <tag-class>coreservlets.tags.IfTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <description>Condition of the if</description>
 <name>test</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
 <tag>
 <description>Then tag (goes with If tag)</description>
 <name>then</name>
 <tag-class>coreservlets.tags.ThenTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>
 <tag>
 <description>Else tag (goes with If tag)</description>
 <name>else</name>
 <tag-class>coreservlets.tags.ElseTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>
</taglib>

Listing 8.30 if-test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>If Test</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>If Test</H1>
<P>
<%@ taglib uri="/WEB-INF/tlds/csajsp-taglib-adv.tld"
 prefix="csajsp" %>

Listing 8.29 Excerpt from csajsp-taglib-adv.tld (continued)

8.12 Example: If-Then-Else Tag 417

Figure 8–6 Result of if-test.jsp.

<H2>SSL Usage</H2>
<csajsp:if
 test="${pageContext.request.protocol==https}">

<csajsp:then>Using SSL.</csajsp:then>
 <csajsp:else>Not using SSL.</csajsp:else>
</csajsp:if>
<H2>Coin Tosses</H2>

 <csajsp:for count="5">
 <csajsp:if test="<%=Math.random()<0.5%>">
 <csajsp:then>Heads</csajsp:then>
 <csajsp:else>Tails</csajsp:else>
 </csajsp:if>
 </csajsp:for>

</BODY></HTML>

Listing 8.30 if-test.jsp (continued)

JSP STANDARD TAG
LIBRARY (JSTL)

Topics in This Chapter

• Installing JSP Standard Tag Library (JSTL)

• out Tag

• forEach and forTokens Tags

• if Tag

• choose, when, and otherwise Tags

• set and remove Tags

• import Tag

• url and param Tags

• redirect Tag

• catch Tag

419

ChapterChapter 9

It’s easy to see why the standard JSP actions and JSP EL are usually not powerful
enough when it comes to implementing a complex presentation logic. They lack basic
features such as looping and storing scoped variables, and they have limited condi-
tional logic, among many others. However, the ability to create custom tags and func-
tions more than compensates for this drawback.

However, it would be a terrible waste of time for every developer to have to write
his or her own if tags, for loop tags, and so on. This is where the JSP Standard Tag
Library (JSTL) comes to the rescue. JSTL provides many useful tag libraries and has
been universally excepted by the Java community, so much so that it became its own
specification. Although this specification is not part of the JSP specification, it’s very
closely related and the Sun Certified Web Component Developer (SCWCD) certifi-
cation requires the knowledge of its core tag library to pass the exam.

The most commonly used JSTL tag library is the core library. This library is also
the only one you need to know to pass the SCWCD certification exam. Version 1.1 of
this library is the focus of this chapter. It contains the following tags: out, if,
forEach, forTokens, choose, when, otherwise, set, remove, import, url,
param, redirect, and catch.

Chapter 9 ■ JSP Standard Tag Library (JSTL)420

9.1 Installation of JSTL

Because JSTL is a specification, more than one implementation of this specification
is possible. Apache Foundation’s Jakarta Taglibs project provides a very popular
implementation of JSTL and that’s the one we use in this chapter.

To import JSTL into a Web application, follow these steps.

1. Download JSTL. You can download the implementation by following
this URL: http://jakarta.apache.org/site/downloads/downloads_taglibs-

standard.cgi. The Web page offers you two options for download,
either a .zip format or .tar.gz format. Usually, users of Windows
download the .zip format file and users of UNIX-based systems down-
load the .tar.gz format file.

2. Unzip it to a directory. The directory can be any directory on your
hard drive. Because Apache implementation ships with some support-
ing material (e.g., a sample Web application), we don’t need to copy all
of it into our Web app.

3. Copy standard.jar and jstl.jar into the WEB-INF/lib of your
application. These JAR files are located in the directory to which you
unzipped the downloaded file in the jakarta-taglibs-standard-1.1.2/lib
directory. You need both of these JARs because jstl.jar contains only
the interfaces that the JSTL specification requires these tags to imple-
ment and standard.jar contains the actual implementations along with
the TLD files.

4. Import the library into your JSP page with the taglib directive.
We discuss how to import any tag library into your JSP page in Chap-
ter 7 (Tag Libraries: The Basics). There is nothing different about
importing the JSTL tag library. It uses the same taglib directive
mechanism as in the following. Note the uri value shown. This is the
URI that imports the core JSTL tag library.

<%@ taglib prefix="c"
 uri="http://java.sun.com/jsp/jstl/core" %>

5. (Optional) Download the JSTL tag library documentation. It is
also very useful to save a link to or download the JSTL tag library doc-
umentation, its TLDDoc. TLDDoc is HTML-based documentation
that is similar to JavaDoc, but it’s specially formatted for displaying
information about Java-based custom tags. It’s generated from the
TLD file. The documentation for the JSTL 1.1, which is what we are
covering in this chapter, can be found at http://java.sun.com/products/

jsp/jstl/1.1/docs/tlddocs/index.html

http://jakarta.apache.org/site/downloads/downloads_taglibsstandard.cgi
http://jakarta.apache.org/site/downloads/downloads_taglibsstandard.cgi
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

9.2 c:out Tag 421

Note that the prefix we assigned to the core JSTL tag library in Step 4 is "c". As
we explained in Chapter 7 (Tag Libraries: The Basics), this prefix can be anything
you want. However, it’s a known convention that the JSTL core tag library is
assigned "c" as the prefix and you should stick to that whenever possible. Follow-
ing universally accepted conventions makes the code easier to read. In fact, from
this point on in the chapter we refer to the tags together with their standard prefix,
as in c:out tag.

9.2 c:out Tag

The c:out tag is very similar to JSP scripting expressions like <%= ... %> and
standard JSP EL use like ${...}, but it has many advantages. Unlike the JSP
scripting, it’s a regular tag, so it makes the HTML look cleaner. However, the cleaner
look can be accomplished with JSP EL as well. However, unlike JSP EL, the c:out
tag lets the JSP developer specify a default value to output if the resulting expression
evaluates to null. It also has an attribute that allows the tag to automatically escape
any XML type characters like <, >, &, ", '. If the result of some expression contains
any of the characters mentioned, it might break the rendering of the HTML page.
This is because the browsers will try to interpret those characters as part of HTML
markup. Much nastier problems could arise if a malicious user inserts some HTML
markup into an input field that is output to the screen unfiltered, which is known as a
cross-site scripting (CSS) attack. The c:out tag avoids all these problems by provid-
ing the escapeXml attribute that is set to true by default. This feature means that
the c:out tag converts those special characters into the HTML equivalent charac-
ters. For example, the character < would be converted to <.

Because the old containers, pre-JSP 2.0, do not understand the JSP EL, the
c:out tag can also be used as a portable alternative to JSP EL, if support for older
containers is important to your application.

Listing 9.1 shows a JSP page, out.jsp, which uses the c:out tag. We import the
JSTL core library using the standard taglib directive at the top of the page. Note
that the title and the heading of the page use the c:out tag to output special charac-
ters, namely < and >. Also, because the bean specified by the key account doesn’t
really exist in any scope, the expression evaluates to null. However, because we are
able specify a default value using the c:out tag, the user will see the word none
instead. Figure 9–1 shows the resultant page view.

Chapter 9 ■ JSP Standard Tag Library (JSTL)422

Figure 9–1 Result of out.jsp.

9.3 c:forEach and c:forTokens Tags

The c:forEach tag provides basic iteration, accepting many different collection
types. It can also function as a counter-based for loop, specifying a begin, end, and
a step index. It uses the var attribute to allow the JSP developer to specify a key
with which to refer to the current element through the iteration. The c:forTokens
tag functions much like c:forEach except it is designed to iterate over a string of
tokens separated by delimiters. What is considered a delimiter is customized through
its required delims attribute.

Listing 9.2 shows a JSP page, for.jsp, which demonstrates several uses of both
c:forEach and c:forTokens tags. Figure 9–2 shows the resultant page view.

Listing 9.1 out.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:out> Tag"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE><c:out value="<c:out> Tag"/></CODE></H1>

 Subscription ID:
 <c:out value="${account}" default="none"/>

</BODY></HTML>

9.3 c:forEach and c:forTokens Tags 423

Listing 9.2 for.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:foreach>, <c:forTokens> Tags"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE><c:out value="<c:foreach>, <c:forTokens>
Tags"/></CODE></H1>
<TABLE>
<TR><TD>

<c:forEach var="i" begin="1" end="10" step="2">

 i = ${i}
 </c:forEach>

</TD>
<TD>
<%
java.util.List list = new java.util.ArrayList();
list.add("One");
list.add("Two");
list.add("Three");
list.add("Four");
list.add("Five");
request.setAttribute("list", list);
%>

<c:forEach var="item" items="${list}">

 ${item}
 </c:forEach>

</TD>
<TD>

<c:forTokens var="item"

 items="<Once)Upon,A(Time%There...>"
 delims="<),(%>">
 ${item}
 </c:forTokens>

</TD>
</TR>
</TABLE>
</BODY></HTML>

Chapter 9 ■ JSP Standard Tag Library (JSTL)424

Figure 9–2 Result of for.jsp.

9.4 c:if Tag

The c:if tag is a simple conditional tag that evaluates its body if the supplied condi-
tion is true. The condition is evaluated through its required attribute test.

Listing 9.3 shows the forif.jsp page that uses the c:forEach tag to loop through
a set of numbers. We use the c:if tag inside the loop to conditionally output the
words greater than 3 if the current index of the loop is in fact greater than 3.
Figure 9–3 shows the result.

Listing 9.3 forif.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:if> Tags"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE><c:out value="<c:if> Tag"/></CODE></H1>

9.5 c:choose Tag 425

Figure 9–3 Result of forif.jsp.

9.5 c:choose Tag

The c:choose tag is a conditional tag that establishes a context for mutually exclu-
sive conditional operations, marked by the c:when and c:otherwise tags. These
three tags work much in the same way as the standard Java switch-case-default
statements. The c:choose tag itself does not have any attributes. Its sole purpose is
to provide the context to the other two tags (i.e., c:when and c:otherwise). The
c:when tag functions in exactly the same way as the c:if tag. It has a test
attribute that allows the JSP developer to specify a condition, which if evaluated to

<c:forEach var="i" begin="1" end="10" step="2">

 i = ${i}

<c:if test="${i > 3}">
 (greater than 3)
 </c:if>

</c:forEach>

</BODY></HTML>

Listing 9.3 forif.jsp (continued)

Chapter 9 ■ JSP Standard Tag Library (JSTL)426

true, would signal to the container to evaluate the body of the c:when tag. If a par-
ticular c:when tag’s condition evaluates to true, no other c:when tags below it are
evaluated and the processing jumps to the line after the closing c:choose tag. If the
optional c:otherwise tag is specified and no c:when tag evaluates to true, the
body of the c:otherwise tag is evaluated.

Listing 9.4 shows the forchoose.jsp page. In it, we iterate through numbers 1
through 10 and output different messages depending on what the current iteration
index is. This is nothing exciting, but it illustrates the point. Figure 9–4 shows the result.

Listing 9.4 forchoose.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:choose>, <c:when>, <c:otherwise> Tags"/>
</TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE>
<c:out value="<c:choose>, <c:when>, <c:otherwise> Tags"/></CODE></
H1>

<c:forEach var="i" begin="1" end="10">

 i = ${i}

<c:choose>
 <c:when test="${i < 3}">(less than 3)</c:when>
 <c:when test="${i < 5}">(less than 5)</c:when>
 <c:when test="${i == 5}">(It IS 5! SO exciting!)</c:when>
 <c:otherwise>(greater than 5)</c:otherwise>
 </c:choose>

</c:forEach>

</BODY></HTML>

9.6 c:set and c:remove Tags 427

Figure 9–4 Result of forchoose.jsp.

9.6 c:set and c:remove Tags

The c:set tag is used either for setting a scoped attribute or updating and creating
bean properties and map values. The following are some of the common forms in
which the c:set tag is used.

<c:set var="attributeName" value="someValue" />
<c:set target="map" property="elementKey" value="elementValue" />
<c:set target="bean" property="name">John Dow</c:set>

Notice that the last c:set tag does not specify the value attribute. Its value
comes from the body of the c:set tag. It’s often the case that the value we want to
set contains characters or dynamic expressions that are either difficult or sometimes
simply impossible to place inside a tag attribute (i.e., value) in a legal way. This is
why the c:set tag allows the value to come from either its value attribute or the
body of the c:set tag.

Chapter 9 ■ JSP Standard Tag Library (JSTL)428

Core Note

You can specify the value of the c:set tag either using its value
attribute or placing the value as the body of the c:set tag.

The c:set tag provides two attributes, var and target, of which at least one is
required. However, these attributes are not allowed to appear at the same time.

The var attribute is used to specify the name of an attribute to set. This attribute
is set in the scope specified by the optional scope attribute. If the scope attribute is
not specified, it defaults to page scope.

The target attribute must be an expression that evaluates to some object. If the
object implements the Map interface, the property attribute of the c:set tag is
treated as a key with which to create a new map entry with the value specified. If the
target evaluates to a JavaBean, the value of the c:set tag is passed to the property
of the target JavaBean specified by the property attribute.

When the value of the c:set tag evaluates to null, the effect is no different then
invoking someScopeReference.setAttribute(null), where some-
ScopeReference is one of request, response, session, and so on, which essentially
removes the attribute from that scope. For convenience, JSTL provides an explicit
c:remove tag. The c:remove tag allows the JSP author to specify the name of the
attribute to remove using the required var attribute and the scope to remove it from
using the optional scope attribute. Unlike the c:set tag, if the scope attribute is
not specified, the c:remove tag will remove the attribute from all scopes.

Listing 9.5 shows set.jsp as an example of how c:set and c:remove can be used.
First, we use the c:set tag to create an attribute called map (of type HashMap) and
store it in the request scope. We populate the map using the c:set tag as well.
The first element in the map is partialTitle, which contains only part of this
book’s title. The fullTitle element is comprised from the partialTitle ele-
ment plus the second part of the title. Note that because the value of the partial-
Title contains special characters, which can be interpreted by the browser as
HTML, we are forced to use the c:out tag for output. The convenience provided by
the c:set tag in allowing its body to be utilized as the value to set comes in very
handy because it would be illegal to place a custom tag as the value of another cus-
tom tag’s attribute. We use the regular JSP EL to output the title inside the H1 tag.
We proceed to set the authors attribute using the c:set tag in the request
scope. Then, we set another authors attribute omitting the scope attribute, which
defaults to the page scope. Using JSP EL, we output the label for the list of authors,
which is stored in the authors attribute contained in the page scope, and the list of
authors itself, which is stored in the authors attribute contained in the request

9.6 c:set and c:remove Tags 429

scope. Next, we demonstrate how the c:remove tag works by instructing it to
remove the authors attribute from every scope by omitting the scope attribute.
Outputting both authors attributes, in the page and request scopes, we observe
that they are no longer there. Figure 9–5 shows the result of invoking the set.jsp
page.

Listing 9.5 set.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:set>, <c:remove> Tags"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="CENTER"><CODE><c:out value="<c:set>, <c:remove> Tags"/>
</CODE></H1>
<c:set var="map" value="<%= new java.util.HashMap() %>"

scope="request"/>
<c:set target="${map}" property="partialTitle"

value="<read-it>Core</read-it>"/>
<c:set target="${map}" property="fullTitle">
 <c:out value="${map.partialTitle}"/>
 Servlets and
JSP Volume 2

</c:set>
<H1 ALIGN="CENTER">${map.fullTitle}</H1>

<c:set var="authors"
 value="Marty Hall, Larry Brown, Yaakov Chaikin"
 scope="request"/>
<c:set var="authors">Authors</c:set>
<H2 ALIGN="CENTER">${authors}: ${requestScope.authors}</H2>
<c:remove var="authors"/>
<H2 ALIGN="CENTER">${pageScope.authors}: ${requestScope.authors}
</H2>
</BODY></HTML>

Chapter 9 ■ JSP Standard Tag Library (JSTL)430

Figure 9–5 Result of invoking set.jsp.

9.7 c:import Tag

The JSP framework provides a couple of ways to include content from the same con-
tainer. We can use the static inclusion by employing the include directive, which
includes the referenced content at page translation time. We can also use the
dynamic inclusion by employing the jsp:include standard action, which includes
the referenced content at request time. Remember that with both of these types of
inclusion mechanisms the included content cannot be a complete HTML page
unless the including page is nothing more than the inclusion statement itself. Usually,
therefore, the included content has to provide only a snippet of HTML that can fit in
with the rest of the including page’s HTML markup without invalidating it.

However, what if the content we want to include resides on a different server?
The include directive as well as the jsp:include standard action can’t help us
there, but the c:import JSTL tag can. This tag can include the content, pointed to
by the required attribute url, even if the content resides on a different Web server.

The default behavior of c:import is to output the included content into the
including page at the place where c:import appears. However, if the optional var
and the likewise optional scope attributes are specified, the included content can be
saved as a scoped attribute instead. If the scope attribute is omitted, it defaults to
the page scope.

9.7 c:import Tag 431

Again, be aware that whatever you import into your existing JSP page better not
be a complete HTML page by itself. The imported content has to be a snippet of
HTML that has to fit into the structure of your existing HTML page. Also remember
that if the imported content contains relative links they will most likely not work any-
more because the links will be interpreted relative to the location of the importing
page. This issue is just as relevant to the other aforementioned ways of inclusion, but
even more so to the c:import tag because it is able to import content from other
Web sites on the Internet over which you probably have even less control.

Core Warning

The imported content has to be a snippet of HTML that fits into the
structure of your existing HTML page. The links inside the imported
content have to be absolute.

The c:import tag can just as easily import content from the same container. In
such cases, you can use the c:param tag in the exact same way as you would use the
jsp:param with the jsp:include standard action. For more details on the
jsp:include standard action, see Volume 1, Chapter 13..

Listing 9.6 shows the import.jsp page. In this page we use c:import to pull
down two different HTML snippets from http://volume2.coreservlets.com. The
snippets are snake.html and marty-with-snake.html, shown in Listing 9.7 and Listing
9.8, respectively. Note two important things about these snippets. The first is that
they are just HTML snippets; that is, they are not valid HTML pages by themselves.
The second is that the IMG tag’s SRC attribute specifies the source of the image by its
absolute URL, not a relative one. If it didn’t, we would not be able to import it into
our page and still see the images. The first c:import tag in the page does not out-
put the included content, but caches it into a scoped attribute martyWithSnake,
using the c:import tag’s optional var attribute. Because we do not specify the
scope attribute, it defaults to page scope, which is good enough for our example.
Later on in the page we display this content by simply accessing the martyWith-
Snake attribute with the JSP EL expression ${martyWithSnake}. The second
c:import tag does not specify a var attribute, so the included content is output
into the place where the c:import tag appears. Figure 9–6 shows the result of
invoking import.jsp.

http://volume2.coreservlets.com

Chapter 9 ■ JSP Standard Tag Library (JSTL)432

Listing 9.6 import.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Marty playing with snakes</TITLE>
</HEAD>
<BODY>
<c:import

url="http://volume2.coreservlets.com/marty-with-snake.html"
 var="martyWithSnake"/>
<TABLE ALIGN="CENTER">
<TR>
 <TD COLSPAN="2" ALIGN="CENTER"><H1>Travels to Far East</H1></TD>
</TR>
<TR>
 <TD>
<c:import url="http://volume2.coreservlets.com/snake.html"/>

 </TD>
 <TD>${martyWithSnake}</TD>
</TR>
</TABLE>
</BODY></HTML>

Listing 9.7 snake.html

<DIV>

A snake
</DIV>

Listing 9.8 marty-with-snake.html

<DIV>
<IMG
SRC="http://volume2.coreservlets.com/images/MartyWithSnake.jpg">

Marty holding a snake
</DIV>

9.8 c:url and c:param Tags 433

Figure 9–6 Result of invoking import.jsp.

9.8 c:url and c:param Tags

Recall from Volume 1, Chapter 9 that with the HttpSession object provided by
the container, session tracking is taken care of for you. There is, however, one task
that you cannot escape with automatic session tracking alone: links in your pages that
point back to other pages in your own Web application. Automatic session tracking
will work whether the client has cookies enabled or not. In case the cookies are dis-
abled the session tracking is done through URL rewriting; that is, the container reads
the session ID straight from the URL without using a session cookie. However, the
container will not automatically append the session ID to the URLs that are sent
back to the client inside your JSP pages. Every URL within your application needs to
be encoded if it is to retain the session ID information. This is usually done with the
encodeURL method of the HttpServletResponse class. However, it would be
great if we didn’t need to insert Java code inside our JSP pages just to encode URLs.
This is where JSTL’s c:url tag is very handy. Just like the encodeURL method, it
encodes the URL specified in its required value attribute, appending the session
ID if the client browser is not using cookies, and leaves the URL as it was if the client
browser is able to accept a session cookie. For more information on encoding URLs,
please see Volume 1, Section 9.5.

Chapter 9 ■ JSP Standard Tag Library (JSTL)434

Just like the c:import tag, the c:url tag is able to hold off on outputting the
URL string if the optional var attribute is present. In such a case, the resulting URL
gets stored in a scoped attribute. The scope can be specified by the optional scope
attribute. If omitted, the scope defaults to page scope, as usual.

The c:url tag in combination with the c:param tag solves yet another problem.
What if you need to append some parameters at the end of the URL you are con-
structing? Sure, you can do something like this:

<c:url value="myurl?fullName=${fullNameParam}"/>

However, what if the fullNameParam turns out to be John Dow, with the space
character in it? Spaces are illegal inside URLs, so we need to encode the parameters
as well. This is quite easily done with one or more c:param tags nested inside the
c:url tag. The c:param tag supplies the c:url tag with the name and value of
request parameters for the URL with its required attributes called name and value.

 Listing 9.9 shows url.jsp as a simple example of using the c:url and c:param
tags. We disabled cookies in the browser to force the c:url tag to append the ses-
sion ID to the resulting URL. First, we use the c:url tag just to output a URL and
see the session ID appended. Next, we use the c:url tag in conjunction with the
c:param tag to encode a value with a space in it, John Dow. Instead of outputting
the resulting URL right away, we store it in a scoped attribute inputUrl and output
it later in the page using JSP EL. Because we omitted the scope attribute, it
defaults to the page scope. Figure 9–7 shows the result of invoking url.jsp. We
observe that the URL strings output in the page contain the session ID and that the
value of the request parameter has been encoded as well, replacing the space charac-
ter with the + character.

Listing 9.9 url.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:url>, <c:param> Tags"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE><c:out value="<c:url>, <c:param> Tags"/>
</CODE></H1>
<H4>URL without parameters: <c:url value="/out.jsp"/></H4>
<c:url value="/out.jsp" var="inputUrl">
 <c:param name="name" value="John Dow"/>
</c:url>
<H4>URL with parameters: ${inputUrl}</H4>
</BODY></HTML>

9.9 c:redirect Tag 435

Figure 9–7 Result of invoking url.jsp.

9.9 c:redirect Tag

The c:redirect tag could be called the one-stop shop for redirecting URLs in JSP
pages. If its required url attribute specifies an absolute URL, the c:redirect tag
acts just like the sendRedirectURL method of the HttpServletResponse class.
This results in the browser making an additional request to the new URL, and in fact
is no different than if the user were to type the URL by hand. If, however, the URL
specified in the url attribute is a relative URL, a dynamic forward occurs, which is
equivalent to the forward method of the RequestDispatcher class. In this case,
the browser address bar still shows the original URL and not the URL of the for-
warded to page.

Just like c:url and c:import, the c:redirect tag can take advantage of the
automatic encoding provided by nesting one or more c:param tags in its body.

The following two examples show the usage of c:redirect. Listing 9.10 shows
redirect1.jsp. This page consists of just the taglib directive and the c:redirect
tag. In this instance we use a relative URL. Figure 9–8 shows that the URL in the
browser address bar stays the same (i.e., redirect1.jsp) but the page shown is, in fact,
out.jsp, which is where the forward was directed. Listing 9.11 shows redirect2.jsp.
Similarly, this page consists of only the taglib directive and the c:redirect tag.
However, this time, the url attribute specifies an absolute URL. We also nest two
c:param tags in the body of the c:redirect tag to supply the URL with some
encoded request parameters. Figure 9–9 shows the result of invoking redirect2.jsp.
Note that not only is the content of the page different, but the URL shown in the
browser is different from the originally typed in URL (i.e., http://localhost/jstl/
redirect2.jsp).

Chapter 9 ■ JSP Standard Tag Library (JSTL)436

Figure 9–9 Result of invoking redirect2.jsp.

Listing 9.10 redirect1.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<c:redirect url="out.jsp"/>

Listing 9.11 redirect2.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<c:redirect url="http://www.google.com/search">
<c:param name="hl" value="en"/>
<c:param name="q">Core Servlets</c:param>
</c:redirect>

Figure 9–8
Result of invoking
redirect1.jsp.

9.10 c:catch Tag 437

9.10 c:catch Tag

The c:catch tag acts like the try/catch construct in Java, except in the case of
c:catch, there is no try. If you surround part of the page that may throw an excep-
tion with the c:catch tag, and an exception occurs, the page will still render up
until the point where the exception occurred and then continue rendering from the
c:catch end tag on. You can store the thrown exception in a page scoped attribute
specified by the optional var attribute.

We strongly discourage you from using this tag for anything other than debug-
ging or experimentation. Exception handling is not the job of the JSP page. Excep-
tions should be handled by the business logic before the control ever gets to the
JSP page.

Core Warning

Avoid using the c:catch tag for anything other than debugging or
experimentation. Exception handling should be part of the business logic
code, not the JSP page.

Listing 9.12 shows catch.jsp as an example of how to use the c:catch tag. We
trigger a java.lang.ArithmeticException, which gets caught and stored in an
attribute called myException. We display the message of this exception using JSP
EL. Note that even though the exception occurred, that page still completed render-
ing. Figure 9–10 shows the result of invoking catch.jsp.

Listing 9.12 catch.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE><c:out value="<c:catch> Tag"/></TITLE>
</HEAD>
<BODY>
<H1 ALIGN="center"><CODE><c:out value="<c:catch> Tag"/></CODE>
</H1>
<H3>Before illegal operation</H3>
<c:catch var="myException">

Chapter 9 ■ JSP Standard Tag Library (JSTL)438

Figure 9–10 Result of invoking catch.jsp.

<% int x = 1 / 0; %>
</c:catch>
<H3>After illegal operation</H3>
Exception message: ${myException.message}
</BODY></HTML>

Listing 9.12 catch.jsp (continued)

This page intentionally left blank

THE STRUTS
FRAMEWORK: BASICS

Topics in This Chapter

• Downloading and installing Struts

• Weighing the pros and cons of Struts

• Understanding the Struts flow of control

• Learning the six basic steps in using Struts

• Writing Actions to process requests

• Using form beans to handle request parameters

• Prepopulating input forms

• Redisplaying input forms

441

ChapterChapter 10

In Chapter 15 of Core Servlets and JavaServer Pages, Volume 1, we presented the
MVC architecture. By using RequestDispatcher in the servlets and the JSP 2.0
EL in the JSP pages, you can create a nice separation between the code that creates
the data (Java) and the code that presents the data (HTML/JSP). Although this is a
simple and powerful approach, in many applications it does not go far enough. The
Apache Struts framework is a powerful framework for applications that use the
MVC approach. It adds many capabilities on top of the ones provided by Request-
Dispatcher and the JSP EL, has become very popular in the developer commu-
nity, and is used in a number of well-known Web sites such as travelocity.com,
Enterprise Rent-a-Car, the Internal Revenue Service, imax.com, circuitcity.com,
and mastercard.com.

10.1 Understanding Struts

What is Struts all about? What are the pros and cons of using it? Where do I get it?
How do I install it? This section answers all of these questions.

Different Views of Struts
Although Struts is very popular, nobody can agree on exactly what Struts is. Here are
the most common views:

Chapter 10 ■ The Struts Framework: Basics442

• An MVC framework. Struts provides a unified framework for
deploying servlet and JSP applications that use the MVC architecture.
This view is the way Struts is billed on its Web site, and the way Struts
is presented in almost all Struts books.

• A collection of utilities. Struts provides utilities to simplify many of
the most common tasks in Web application development. Many of
these utilities are not directly tied to MVC. Historically, many people
have downloaded Struts because they want Tiles (a page layout facility
built on top of jsp:include) or a file upload facility, neither of
which have anything specifically to do with MVC.

• A set of JSP custom tag libraries. Struts provides custom tag
libraries for outputting bean properties, generating HTML forms,
iterating over various types of data structures, and conditionally
outputting HTML. Especially before the advent of the JSTL (which
was derived from the Struts iteration and logic libraries), many people
got Struts just for those tag libraries.

Which is the proper way to view Struts? The answer depends on what you are
going to use it for. All three viewpoints are legitimate. However, the most common
way of looking at Struts is as an MVC framework.

Next, we discuss the pros and cons of Struts.

Advantages of Apache Struts (Compared to
MVC with RequestDispatcher and the EL)

Many Struts books and tutorials start like this: “Here is a Web application with JSP
pages jam packed with explicit Java code. Tut, tut, isn’t it hard to create, debug, and
maintain? Here is the same application redone in Struts. Isn’t it so much better? This
shows that Struts is good.” What nonsense. Yes, of course tons of Java code in JSP
pages is bad, and of course Struts would be a huge improvement. That proves noth-
ing; practically anything would be an improvement. Showing how Struts improves
things over a lousy, badly designed JSP application is hardly relevant; the question is
what Struts provides for applications that are designed properly (e.g., using MVC and
the JSP EL). The answer, fortunately, is quite a lot. These advantages are the ones
worth paying attention to.

Compared to the standard MVC approach, here are the main additional benefits
that Struts provides.

• Centralized file-based configuration. Rather then hard-coding
information into Java programs, many Struts values are represented in
XML or property files. This loose coupling means that many changes
can be made without modifying or recompiling Java code, and that

10.1 Understanding Struts 443

wholesale changes can be made by editing a single file. This approach
also lets Java and Web developers focus on their specific tasks
(implementing business logic, presenting certain values to clients,
etc.) without needing to know very much about the overall system
design.

• Form beans. In JSP, you can use property="*" with
jsp:setProperty to automatically populate a JavaBean component
based on incoming request parameters. Obviously, behind the scenes,
there is Java code that takes a bean and a request object, matches up
the request parameters with the bean property names, and calls the
appropriate setter methods. However, this Java API is not exposed.
The specification exposed the API in exactly the place where you don’t
want to use it (you want access to the request parameters long before
you get to the presentation layer), and failed to expose it in the place
where you do want to use it. Aargh! This annoying reversal has been
known to drive developers (well, the authors of this book, anyhow) to
apoplexy. Apache Struts provides a straightforward facility for
populating a bean based on request parameters, and accessing that
bean from Java code. This capability is so useful that it is almost
impossible to live without it once you have been spoiled by trying it. In
fact, in Core Servlets and JavaServer Pages, Volume 1, we showed how
to steal this code from Struts and use it in regular applications.

• Bean tags. Apache Struts provides a set of custom JSP tags
(bean:write, in particular) that let you easily output the properties
of JavaBeans components. Basically, these are concise and powerful
variations of the standard jsp:useBean and jsp:getProperty
tags. In applications that use JSP 1.2 and earlier, this is a huge
advantage. These Struts tags also provide some capabilities not
supported by the JSP EL (e.g., filtering of HTML characters), but
they are also longer and more verbose than the JSP EL. Therefore,
the Struts bean: tags are less of an advantage in newer servers.

• HTML tags. Apache Struts provides a set of custom JSP tags to
create HTML forms that are associated with JavaBeans components.
This bean/form association lets you get initial form field values from
Java objects and lets you redisplay forms with some or all previously
entered values intact. Form redisplay is one of the single most tedious
and poorly supported tasks in the standard servlet and JSP API, and
Struts provides a clean and simple way to do it.

• Form field validation. Apache Struts has built-in capabilities for
checking that form values are in the required format. If values are
missing or in an improper format, the form can be automatically
redisplayed with error messages and with the previously entered
values maintained. This validation can be performed on the server (in

Chapter 10 ■ The Struts Framework: Basics444

Java), or both on the server and on the client (in JavaScript). This
saves hours of work in most applications.

• Consistent approach. MVC is a pretty general idea: Separate
the code that creates the data from the code that presents the
results to the end user. However, there are many different ways of
implementing this general strategy. Struts encourages a consistent way
of implementing MVC, so developers always know where page
navigation rules go, where request parameters are stored, where the
request controller starts, and so on.

Disadvantages of Apache Struts (Compared to
MVC with RequestDispatcher and the EL)

The advantages of Struts are very significant, even when you consider only the advan-
tages compared to a good design within the standard servlet/JSP APIs. Even the
books and papers that don’t present bogus advantages of Struts (“look how great
Struts is compared to 10 million lines of Java code in JSP pages!”) almost always stop
after the advantages. But are there any disadvantages? Yes, and some very significant
ones. If you consider only the advantages of Struts, you will be disappointed when
you use it on a real project and are unprepared for the complexity and spinup time.
On the other hand, if you have realistic expectations, carefully weigh the advantages
and disadvantages, and use Struts only in the projects and with the teams for which it
makes sense, you will find Struts an extremely useful weapon in your development
arsenal.

Here are the main disadvantages:

• Bigger learning curve. To use MVC with the standard
RequestDispatcher, you need to be comfortable with the standard
JSP and servlet APIs. To use MVC with Struts, you have to be
comfortable with the standard JSP and servlet APIs and a large and
elaborate framework that is almost equal in size to the core servlet and
JSP specification. This drawback is especially significant with smaller
projects, near-term deadlines, and less experienced developers; you
could spend as much time learning Struts as building your actual
system. Struts is complicated, takes a long time to learn, and is hard
for new developers to work with. On larger and more complex
projects, the additional complexity is often more than compensated
for by the additional power, but this is not always true. Far from it.
Count the cost before committing to Struts.

• Worse documentation. Guess who pays the Struts developers to
work on Struts? Nobody! So guess what parts of the system they spend
the most time working on? The parts that are fun. Raise your hand if

10.1 Understanding Struts 445

your favorite task is writing documentation. See our point? Compared
to the standard servlet and JSP APIs, Struts has fewer online
resources, and many new users find the online Apache documentation
confusing and poorly organized.

• Less transparent. With Struts applications, there is a lot more going
on behind the scenes than with normal servlet-and-JSP-based Web
applications. In some ways, this is good: Struts performs many of the
tasks you normally would have to do yourself. In other ways, this is
bad: When there is an error or a performance bottleneck in a Struts
application, it is often more difficult to pinpoint the source of the
problem.

• Rigid approach. If you like the Struts spin on MVC, you would say
that struts “encourages” a “consistent” approach to MVC. If you don’t
like the Struts slant on MVC, you will feel that Struts “forces” a “rigid”
approach. If you use Struts, you need to do things the Struts way, at
least for the most part.

• Community fragmentation. Until the end of 2005, there was one
Struts framework. Now, however, there are three: the Struts 1
framework (formally simply “Struts”), the reengineered Struts 2
framework (currently under development), and a new and different
framework called Struts Shale (built around JavaServer Faces). And,
speaking of JavaServer Faces (JSF), it is a competing framework that is
rapidly growing in popularity. Which framework will dominate in the
future? We certainly don’t know, and this uncertainty is a serious
problem, because you hate to invest in learning a framework if you will
switch to another one next year. Nevertheless, given the huge head start
of the classic Struts framework, it is unlikely that JSF or Struts Shale will
replace the Struts framework in the short term. As empirical evidence,
we compared advertised job openings for Struts jobs and JSF jobs in the
first quarter of 2007, and got the results shown in Table 10.1.

Table 10.1 Advertised Struts and JSF Job Openings for Q1 2007

dice.com hotjobs.yahoo.com monster.com

Struts jobs 2,079 1,052 more than 1,000
(monster.com limits
matches to 1,000)

JSF jobs 458 232 335

Ratio of Struts jobs
for each JSF job

4.5:1 4.5:1 at least 3:1

Chapter 10 ■ The Struts Framework: Basics446

10.2 Setting Up Struts

This section walks you through the process of downloading the Struts software, set-
ting up your environment, and testing a simple application. Following, we cover
Struts 1, specifically Struts 1.3. At the time of this writing, Struts 2 was still under
development.

Core Note

This material covers the popular Apache Struts 1. At the time of this
writing, Struts 2, based on WebWork, was still under development.

Installing Struts
In the following list, we quickly summarize the steps to install and configure Struts.

1. Download the Struts code. You can get the latest release build at
http://struts.apache.org/downloads.html. You can get the source
code, example applications, or the documentation, but all that is abso-
lutely required is the struts-blank Web application. If you want to use
the same Struts subrelease as our examples, just grab struts-blank.zip
from the book’s source code archive.

2. Update your CLASSPATH. To compile your Struts-based Web appli-
cations, add struts-core-1.3.5.jar to the CLASSPATH used by your
compiler or IDE.

3. Bookmark the Struts documentation. You can access the documen-
tation online at http://struts.apache.org/1.x/learning.html. Alterna-
tively, you can download a copy of the documentation for local access.

The following subsections give details on each of these steps.

Downloading Struts
To use Struts, all you really need is a blank Web application to use as the starting
point for your Struts-based apps. Struts is a library that works within a regular servlet
and JSP environment; it is not a server or a new programming language. Therefore, if
you have a template Web application with the appropriate JAR files, supporting files,
and web.xml settings, you have Struts. That means that all you absolutely need to
download is the struts-blank template Web application; nothing else is required. You
can find the struts-blank template in the examples distribution, struts-1.3.5-apps.zip.

http://struts.apache.org/downloads.html
http://struts.apache.org/1.x/learning.html

10.2 Setting Up Struts 447

The Apache Struts Web site also has a fuller distribution that includes a local copy of
the documentation, examples, and source code, but this fuller distribution is
optional, not required.

Grab the struts-blank-1.3.5 template from struts-1.3.5-app.zip or from the fuller
distribution, struts-1.3.5-all.zip, at http://struts.apache.org/downloads.html. After
downloading the .zip file, unzip it into a directory of your choice.

Updating Your CLASSPATH
To compile your Web applications, add struts-core-1.3.5.jar to the CLASSPATH used
by your compiler or IDE (not by your server). This JAR file can be found in the lib
directory of struts-blank-1.3.5, and is also in the lib directory of the fuller distribution.

Following are three possible ways to set your CLASSPATH.

• Set the CLASSPATH in the startup file. For example, on Microsoft
Windows, you would put the following lines in C:\autoexec.bat:

set CLASSPATH=some-path\struts-core-1.3.5.jar;CLASSPATH%

On UNIX or Linux, use your .cshrc, .bashrc, or .profile instead. For
example, you would place the following in your .cshrc file (note that this
all goes on one line with no spaces—it is broken here for readability):

setenv CLASSPATH .:some-path/struts-core-1.3.5.jar:
$CLASSPATH

• Set the CLASSPATH through a system setting. On Microsoft
Windows XP, go to the Start menu and select Control Panel, then
System, then click the Advanced tab, then click the Environment
Variables button. On Microsoft Windows 2000, go to the Start menu and
select Settings, then Control Panel, then System, then Environment.
Either way, enter the CLASSPATH value from the previous bullet.

• Set the CLASSPATH in your editor or IDE. Most IDEs have a way
of specifying the JAR files needed to compile projects. Or, you could
make a small .bat file (Microsoft Windows) or shell script (UNIX/
Linux) that supplies the struts-core-1.3.5.jar file as the argument to
-classpath for javac.

Bookmarking the Struts Documentation
You can access Struts documentation on the Apache Web site or you can download a
local copy from struts-1.3.5-docs.zip. The documentation includes a user’s guide,
FAQs, examples, and the API in Javadoc format. From the Apache Web site, you can
find the documentation online at http://struts.apache.org/1.x/learning.html. If you
downloaded the fuller Struts distribution, struts-1.3.5-all.zip, you can find the Struts
documentation at struts_install_dir/docs. Either way, we strongly recommend you
bookmark the documentation for easy access.

http://struts.apache.org/downloads.html
http://struts.apache.org/1.x/learning.html

Chapter 10 ■ The Struts Framework: Basics448

Testing Struts
After downloading Struts, you should test it with your servlet engine. To do so, all you
need to do is install the struts-blank Web application. Here are the basic steps:

1. Install struts-blank on your server. Put a copy of
struts-blank-1.3.5.war in your server’s Web application autodeploy
directory. For Apache Tomcat, you can install the application by
copying the file to tomcat_install_dir/webapps/. Alternatively, use
jar -xvf (or WinZip) to extract the files and copy them
tomcat_install_dir/webapps/.

2. Start the server. Most servers automatically recognize newly
deployed Web applications and do not require a restart if they are
already running when you deploy struts-blank.

3. Access the struts-blank application. Access the application through
http://localhost/struts-blank-1.3.5/. This URL assumes you are run-
ning the server on your desktop and the server is using port 80. In gen-
eral, you would access the application through http://hostname:port/

struts-blank-1.3.5/ (for Struts version 1.3.5). If successful, you should
see a Web page similar to the one shown in Figure 10–1.

Making Your Own Struts Applications
To make your own Struts application, you need the appropriate JAR files, TLD files,
XML files, properties files, and web.xml entries. Because struts-blank-1.3.5 already
has all of these files, the simplest strategy is to copy and rename struts-blank-1.3.5 or

Figure 10–1 Test of the struts-blank Web application.

10.2 Setting Up Struts 449

some previous Web application that was derived from struts-blank. So, your develop-
ment process typically looks like this:

1. Copy the struts-blank-1.3.5 directory to your development area.
2. Rename it whatever you want to call your Web application (say,

my-struts-app).
3. Add code for your application. Remove index.jsp and pages/

Welcome.jsp. Remove any commented out or irrelevant entries
in struts-config.xml.

4. Copy to your server’s Web application deployment directory (e.g., the
webapps directory for Tomcat).

5. Start the server and access http://localhost/my-struts-app/path,
where path corresponds to a file or .do address you created in the
application.

Adding Struts to an Existing Web Application
Adding Struts capabilities to existing Web applications is a huge undertaking and will
probably require several attempts to get it right. Assuming that your Web application is
in the directory your_web_app, here is a quick summary of the steps you would take.

1. Copy the JAR files. Copy the JAR files from struts-blank-1.3.5/
WEB-INF/lib to your_web_app/WEB-INF/lib. There should be about 10
of them, but this can vary in Struts subreleases.

2. Copy the Struts configuration file. Copy struts-config.xml from
struts-blank-1.3.5/WEB-INF to your_web_app/WEB-INF.

3. Copy the properties file. Copy MessageResources.properties from
struts-blank-1.3.5/WEB-INF/classes to your_web_app/WEB-INF/

classes.
4. Copy the Tiles and Validator configuration file. If you plan on

using the Validator plug-in, copy validation.xml from struts-blank-1.3.5/
WEB-INF to your_web_app/WEB-INF. If you plan on using the Tiles
plug-in, copy tiles-def.xml from struts-blank-1.3.5/WEB-INF to
your_web_app/WEB-INF.

5. Copy the deployment descriptor declarations. Copy the declara-
tions out of struts-blank-1.3.5/WEB-INF/web.xml into your_web_app/
WEB-INF/web.xml.

This is a huge pain; don’t bother! Start with struts-blank-1.3.5 (or a previously cre-
ated Web app based on struts-blank) instead.

Chapter 10 ■ The Struts Framework: Basics450

10.3 The Struts Flow of Control and
the Six Steps to Implementing It

In this section, we give the big picture of how a basic Struts application works. First,
we examine the typical flow of a request through the Struts framework. Then, we
present the six basic steps needed to implement this flow. In the rest of the chapter,
we give details and examples of the control flow and the steps for implementing it.

Struts Flow of Control
Before writing your first Struts application, you need to understand the normal flow
of execution through the Struts framework. Figure 10–2 illustrates the apparent exe-
cution flow of the request through the Struts framework. We use the word apparent
because, behind the scenes, the Struts system handles numerous internal steps.
However, from the point of view of the developer, this flow diagram should suffice.

The following list summarizes the flow, and the subsequent subsections explain it
in more detail.

1. The user requests a form. The input form is built with the Struts
html: tags. These tags associate a bean with the form so that you can
prepopulate the form with values from your application, so that you
can redisplay incorrectly filled out forms, and so that Struts knows
where to store the request parameters when the form is submitted.

2. The form is submitted to a URL of the form blah.do. The form
contains an ACTION ending in blah.do. The Struts system receives the
request, where an action mapping in struts-config.xml associates
the address with an Action object.

3. The execute method of the Action object is invoked. One of
the arguments to execute is a form bean that is automatically cre-
ated and whose properties are automatically populated with the
incoming form data. Once it examines the user input data in the bean,
the execute method invokes business logic and data-access logic,
placing the results in normal beans stored in the request, session,
or application scope. Finally, the execute method uses map-
ping.findForward to return various conditions that are mapped by
struts-config.xml to JSP pages.

4. Struts forwards the request to the appropriate JSP page. Struts
normally invokes the results page with RequestDispatcher.for-
ward, although request.sendRedirect is occasionally used (e.g.,
with session-scoped data). In most real applications, the results page
uses bean:write or the JSP 2.0 EL to output bean properties.

10.3
The Struts Flow

 of C
ontrol and the Six Steps to Im

plem
enting It

4
5

1

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean and pass
to execute method.

Use html:form
to build the form.

Figure 10–2 Flow of control in the Struts framework.

Chapter 10 ■ The Struts Framework: Basics452

The User Requests a Form
You use the html:form and html:text tags to create the form, like this:

<html:form action="/blah">
<html:text property="someBeanPropertyName"

</html:form>

When Struts sees the html:form tag, it creates or finds a bean that corresponds
to the /blah address in the Struts configuration file, struts-config.xml . The
html:text line indicates two things: first, that the value of the bean’s someBean-
PropertyName property (i.e., the result of calling getSomeBeanPropertyName)
should be the initial value of the text field, and second, that when the form is sub-
mitted, the text field value is stored in the someBeanPropertyName property
(i.e., the request parameter will be passed to setSomeBeanPropertyName).
Finally, the action of the html:form tag indicates that the submitted address
will be http://hostname/webappname/blah.do.

In the first few examples, we focus on the most fundamental parts of Struts (edit-
ing struts-config.xml and defining Action and bean classes), and use ordinary static
HTML for the input form. We introduce the html: tags in Section 10.6 (Prepopu-
lating and Redisplaying Input Forms).

The Form Is Submitted to a URL of the Form blah.do
The form submits data to a URL of the form blah.do; any request ending in .do is han-
dled by the Struts controller. The deployment descriptor file, web.xml, contains a serv-
let mapping that associates URLs ending with .do with the Struts ActionServlet.
See the following web.xml fragment:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 ...
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

The controller looks at the incoming URL for an action mapping in struts-
config.xml to process the request. Here is an example:

<action-mappings>
 <action path="/register"
 type="coreservlets.RegisterAction"

10.3 The Struts Flow of Control and the Six Steps to Implementing It 453

name="someFormBeanName"
scope="request">

 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
</action-mappings>

This particular mapping says that if the URL http://hostname/webappname/

register.do is received, the execute method of coreservlets.Register-
Action should be invoked. Notice that the .do extension is implied in the path defi-
nition of the action; this fact is quite useful because it lets you change the extension
from .do to anything you want, without having to change lots of separate addresses.

The execute Method of the Action Object Is Invoked
Once Struts determines the URL mapping, it sends the request to the execute
method of the appropriate Action object. One of the arguments to the execute
method is a form bean that is automatically created and whose properties are auto-
matically populated with the incoming form data.

After examining the form data, the Action object then invokes business logic and
data-access logic, placing the results in normal beans stored in the request,
session, or application scope. In this manner, the Action can share the
results beans with the output page (request scope), with subsequent requests by
the same user (session scope), or with requests from all users (application
scope). In practice, the request scope is the most common place for storing the
result beans, because the data is usually needed only for presentation on the output
JSP page.

Finally, the execute method returns a condition (technically an ActionFor-
ward object). Based on the user input and business logic, more than one output JSP
page may be possible, so the execute method must determine which condition or
situation applies. The struts-config.xml file uses forward elements to map these
return conditions to the associated JSP pages. Next we show a fragment of a
struts-config.xml file with a forward definition. Specifically, the forward entry
says that if the execute method of RegisterAction returns mapping.find-
Forward("success"), the system should forward the result to /WEB-INF/results/

confirm-registration.jsp.

<action-mappings>
 <action path="/register"
 type="coreservlets.RegisterAction"

name="someFormBeanName"
scope="request">

 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
</action-mappings>

Chapter 10 ■ The Struts Framework: Basics454

We cover the basics of the action element, forward element, and Action
class in Section 10.4 (Processing Requests with Action Objects); we introduce form
beans in Section 10.5 (Handling Request Parameters with Form Beans).

Struts Forwards the Request to the Appropriate JSP Page
Based on the condition returned from the Action’s execute method, the Struts
system invokes the appropriate JSP results page. Unless you designate otherwise, the
system uses RequestDispatcher.forward to invoke the page. In most real
applications, the results page uses bean:write or the JSP 2.0 EL to output bean
properties. In Section 10.4 (Processing Requests with Action Objects) we focus on
struts-config.xml and the Action definition, and we introduce beans in Section 10.5
(Handling Request Parameters with Form Beans).

The Six Basic Steps in Using Struts
There are six basics steps needed to implement the control flow just described. We
give a quick summary first, then provide more details. The sections in the rest of the
chapter flesh out even more details and give examples.

1. Modify struts-config.xml. For basic Struts usage, this file should
contain three main sections: a table that maps incoming addresses to
Action objects (action entries), a table that maps return conditions
to JSP pages (forward entries), and a list of the beans used to handle
request parameters (form-bean entries). The next two chapters
introduce some more advanced features (properties files, Tiles, valida-
tion) that also use information from struts-config.xml.

2. Define a form bean. Rather than requiring you to call
request.getParameter for each incoming piece of query data,
Struts can instantiate and populate a bean representing the incoming
form data. This is one of the single most useful features of the Struts
framework.

3. Create the results beans. If the JSP page needs data resulting from
the business logic, then create results beans to hold the data. These
beans are nothing Struts-specific, but are normal beans as used in the
basic MVC architecture presented in Chapter 15 of Core Servlets and
JavaServer Pages, Volume 1.

4. Define an Action class to handle the request. Struts automati-
cally invokes the execute method of the Action object specified in
the action entry of struts-config.xml. The execute method typi-
cally uses the form bean to access request data submitted by the user,
invokes business logic and data-access logic, stores results beans based
on that logic, and calls mapping.findForward to designate the
result condition.

10.3 The Struts Flow of Control and the Six Steps to Implementing It 455

5. Create a form that invokes blah.do. Create an HTML form for the
user’s input. Use html:form to associate the form with a bean and to
specify the address that should handle the form submission. Use
html:text and related elements to gather user data and to associate
bean properties with the input elements.

6. Display the results in a JSP page. Write a JSP page to display the
results. Depending on the user input and business logic, you could
have more than one possible results page. Use bean:write or the
JSP EL to output bean properties.

Details follow.

Step 1: Modify struts-config.xml
The main thing new Struts developers should focus on is the Struts configuration file,
struts-config.xml. In general, you must make the following changes to the WEB-INF/

struts-config.xml file.

• Use action entries to map incoming .do address to Action
classes. For example,

<action path="/someAddress"
type="somePackage.SomeAction"
name="someFormBeanName"
scope="request">

means that when the URL http://hostname/webappname/

someAddress.do is received, the system should instantiate the bean
given by someFormBeanName, populate it based on matching
request parameter names to bean property names, and pass it to the
execute method of the SomeAction class.

• Use forward entries to map return conditions to JSP pages.
For example,

<forward name="condition1"
path="/WEB-INF/results/page1.jsp">

means that when the Action returns "condition1", the system
should invoke page1.jsp.

• Declare form beans. For example,

<form-bean name="someFormBeanName"
type="package.SomeActionFormSubclass"/>

associates the given name with the given class. You can choose any
name you want, but the action entry (from the first bullet) must use
the same name.

Chapter 10 ■ The Struts Framework: Basics456

Whenever you modify struts-config.xml, you must restart your server. Unless you
tell your server to treat struts-config.xml specially (e.g., by adding struts-config.xml

to the WatchedResource list in Tomcat’s context.xml file), the struts-config.xml

file is read only when the Web application is first loaded.
Also, the struts-config.xml included in struts-blank-1.3.5 is full of commented-out

examples. Leaving these examples in real applications clutters your configuration file
and makes changes difficult. Remove everything except for the action and
forward entries that are specific to your application.

Core Approach

Only include the entries in struts-config.xml that your application needs.
Delete all the examples and comments from struts-config.xml in
struts-blank-1.3.5. After you make changes to struts-config.xml, restart
the server.

Step 2: Define a Form Bean
A form bean is a class that extends ActionForm and has accessor methods for each
field of the input form submitted by the user. Instead of calling request.get-
Parameter for each form field entry, the system automatically populates and gives
you a form bean with all the query data.

We cover the basics of form beans in Section 10.5 (Handling Request Parameters
with Form Beans); we cover more advanced usage (in particular, the reset and
validate methods) in Chapter 12 (The Struts Framework: Validating User
Input).

Step 3: Create the Results Beans
In the MVC architecture, the business logic and data-access code create the results
without regard to the presentation, and the JSP page presents the data without
regard to where it came from. To transfer the results from the Action (or the busi-
ness logic that the Action invokes) to the presentation layer, the results are stored in
beans. These beans differ from form beans in that they need not extend a particular
class, and they represent the output of the computational process, not the input to
the process.

In general, you may need to create results beans for each output JSP page.
Depending on how you design your beans, you may be able to use them for more
than one output JSP page.

We cover beans in Section 10.5 (Handling Request Parameters with Form Beans).

10.3 The Struts Flow of Control and the Six Steps to Implementing It 457

Step 4: Define an Action Class to Handle the Request
The struts-config.xml file designates the Action object with an execute method
that handles the request for each URL submission. The Action objects themselves
do the real work in the Web application. Each Action has the following important
roles:

• Read the user data from the form bean supplied as the second
argument to execute.

• Invoke the appropriate business and data-access logic.
• Store the results in scoped beans.
• Designate the type of situation that is appropriate for the results (missing

data, database error, success category 1, success category 2, etc.).

Step 5: Create a Form That Invokes blah.do
Use the Struts html: tags to create an input form whose ACTION corresponds to
one of the .do addresses listed in your struts-config.xml and whose input fields are
associated with bean properties. You typically have something like this:

<html:form action="/blah">
<html:text property="someBeanPropertyName"

</html:form>

We postpone the discussion of html:form until Section 10.6 (Prepopulating and
Redisplaying Input Forms). The next two sections use the standard HTML FORM
element.

Step 6: Display the Results in a JSP Page
The last step is to display the results in a JSP page. Because Struts is built around the
MVC design pattern, these JSP pages should avoid JSP scripting elements whenever
possible. Because the dynamic content of the JSP page is generally located in results
beans, the most common Struts approach is to use the bean:write custom tag to
display properties of the bean.

If the servlet engine supports the JSP 2.0 API, then using the JSP 2.0 EL is a via-
ble alternative. Also, in complex cases, using JSTL or the Struts looping and logic tags
is suitable.

In most cases, the JSP pages only make sense when the request is funneled
through the Action object, because it is the Action that stores the data that the
JSP pages will present. If the user were to access the JSP pages directly, the data
would be missing and the pages would crash or display incorrectly. So, just as with
standard RequestDispatcher-based MVC, the results pages are usually stored
somewhere under WEB-INF. This prevents direct user access to the pages, but still lets
the system forward to them.

Chapter 10 ■ The Struts Framework: Basics458

Core Approach

To prevent direct access to your results pages, place them in a directory
within WEB-INF.

However, if the JSP pages make sense independently of the data just created by
the Action object (e.g., if they display session data), then place the JSP pages in
a regular directory of the Web application, not under WEB-INF. In this case, the
forward entries in struts-config.xml should specify a redirect of true, as illus-
trated here:

<forward ... redirect="true"/>

This entry instructs the system to invoke the page using response.send-
Redirect instead of RequestDispatcher.forward.

10.4 Processing Requests with
Action Objects

You downloaded struts-blank-1.3.5 to use as the starting point for your apps, and
updated your CLASSPATH to include struts-core-1.3.5.jar so that your editor or IDE
will let you compile Struts-specific code. You understand the basic flow of control in
Struts. You are now ready to try a real Struts application.

The Struts framework is quite complicated, and learning all the pieces at once is
an overwhelming task. In this section, we focus on two pieces: first, using Action
objects to handle requests, and second, using the struts-config.xml file to map
incoming .do addresses to these Action objects and to map the return conditions of
the Action objects to JSP pages. In later sections of in this chapter, we look at using
form beans and the Struts html: tags.

Understanding Actions
Before looking at a couple of examples, we need to understand the requirements for
using the Action class in Struts. First, in struts-config.xml you need to define
action and forward entries. Second, you need to write the Action class itself.

We discuss each of these requirements in the following subsections.

10.4 Processing Requests with Action Objects 459

Defining Actions in struts-config.xml
In general, when defining an Action, you need to make three modifications to
struts-config.xml.

• Use action entries to map incoming .do addresses to Action
classes.

• Use forward entries to map return conditions to JSP pages.
• Declare form beans.

The upcoming example illustrates the first two modifications. We postpone the third
step until Section 10.5 (Handling Request Parameters with Form Beans).

Map Incoming .do Addresses to Action Classes
To designate an Action class to handle a request, add an action entry to
action-mappings in struts-config.xml. A representative action is given here:

 <action-mappings>
 <action path="/register"
 type="coreservlets.RegisterAction">
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 ...
 </action-mappings>

This action entry associates the URL http://hostname/webappname/register.do

with the Action class coreservlets.RegisterAction. Notice that .do is implied
automatically, so the path attribute is "/register", not "/register.do". When
the Struts controller sees an incoming URL of http://hostname/webappname/

register.do, it invokes the execute method of coreservlets.Register-
Action. In Section 10.5 (Handling Request Parameters with Form Beans), we see
that the system may also instantiate, populate, and validate form beans before the
execute method is called.

Table 10.2 summarizes the common attributes of the action element. For a
complete l ist o f action attr ibutes, see http://struts . apache.org/dtds/

struts-config_1_3.dtd.

http://struts.apache.org/dtds/struts-config_1_3.dtd
http://struts.apache.org/dtds/struts-config_1_3.dtd

Chapter 10 ■ The Struts Framework: Basics460

Map Return Conditions to JSP Pages
The execute method uses mapping.findForward to return different conditions
based on various results of the business logic. Typically, you specify a different JSP
page for each of the various return values. To specify a response page, add a
forward entry to the action element in struts-config.xml. The name should
match one of the conditions returned by the execute method of the Action
object. An example is shown here:

<action path="/register"
 type="coreservlets.RegisterAction">
 <forward name="success"

path="/WEB-INF/results/confirm-registration.jsp"/>
...

</action>

If the execute method of RegisterAction returns mapping.find-
Forward("success"), the Struts system uses RequestDispatcher.forward
to invoke /WEB-INF/results/confirm-registration.jsp. You define a different forward
element for each of the possible return values.

Table 10.2 Common Attributes of the action Element in struts-config.xml

Attribute Description

path The relative path that should trigger the Action. This is the incoming
URL, minus the host and Web app names at the front and minus .do at the
end. For example, path="/foo/bar" refers to http://hostname/

webappname/foo/bar.do. This attribute is required.

type The fully qualified class name of the Action whose execute method is
invoked when Struts receives a request for the specified path. This attribute
is required.

name The alias of the form bean associated with the Action. The value for this
attribute must match a form bean defined in the form-beans section. See
Section 10.5 for details on form beans.

scope The scope of the form bean associated with the Action. By default, the
form bean has session scope, but can be request or application.
See Section 10.5 for details on form beans. This attribute is optional, but it
is good practice to always explicitly state the scope.

input The relative path to the input form. If validation of the form data fails, the
system can route the request back to the input page. See Chapter 12 (The
Struts Framework: Validating User Input) for more information.

10.4 Processing Requests with Action Objects 461

Table 10.3 summarizes the common forward attributes. The default behavior is
to invoke the JSP page with RequestDispatcher.forward, which means that
forwarding occurs within the servlet container, and the URL in the browser will be
the original .do address, not the address of the output JSP page.

Alternatively, if you use redirect="true", the JSP page will be invoked with
response.sendRedirect. As discussed in Chapter 6 of Core Servlets and JavaServer
Pages, Volume 1, a redirect means that a 302 status code and a Location response
header are sent to the browser, and then the browser connects to the URL specified in
the Location header. This means that a redirect results in two round trips from the
browser to the server, and the URL displayed in the browser will reflect the output JSP
page. You only use redirect="true" with session or application scoped data.

Declare the Use of Any Form Beans
The Struts system automatically populates the form bean with the user form data
before sending the request to the Action. We discuss how to declare form beans in
struts-config.xml in Section 10.5 (Handling Request Parameters with Form Beans).

Writing an Action
The execute method of the Action processes the request, applies business and
data-access logic, creates data representing the results (usually stored in the form of
beans), and designates which return condition applies. When writing an Action,
you should adhere to the following guidelines.

• Place it in a package. Place all your classes, not just your Action
classes, in packages. You then refer to the fully qualified class name
(i.e., packagename.classname) in the type attribute of the
action element.

Table 10.3 Common Attributes of the forward Element in struts-config.xml

Attribute Description

name The return condition that this entry corresponds to. This attribute is
required.

path The URL of the JSP page that is invoked if the return condition matches
name. Except when using redirect="true", the page should be in a
subdirectory of WEB-INF to prevent the user from accessing the page
before the data the page displays is ready. This attribute is required.

redirect By default, the redirect attribute is false, meaning that the Struts
system uses RequestDispatcher.forward to invoke the page. Use
true to tell Struts to use response.sendRedirect instead.

Chapter 10 ■ The Struts Framework: Basics462

• Add Struts-specific import statements. In particular, your class
needs to import javax.servlet.http.* (standard servlet import)
and org.apache.struts.action.* (Struts-specific import). You
would add these imports to the list of your other imports.

• Extend the Action class. Your class must inherit from the Struts
Action class, as shown here:

public class YourAction extends Action {
 ...
}

• Override the execute method. The Struts system determines
which Action class to run based on the requesting URL. Once
determined, the Struts system calls the execute method of that class.
The execute method is defined as follows:

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ...
 }

The first argument, ActionMapping, is used to designate a condition
that should match a forward entry in struts-config.xml. The second
argument, ActionForm, is a form bean associated with the input
page. We discuss form beans in Section 10.5 (Handling Request
Parameters with Form Beans). The third and fourth arguments are
the familiar HttpServletRequest and HttpServletResponse
objects, respectively.

• Return mapping.findForward. The execute method should
return an ActionForward based on conditions determined by the
business logic. Each condition is mapped to a JSP page by a named
forward entry in struts-config.xml. To designate the return
condition, call mapping.findForward with the name of the
condition, as illustrated here:

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ...
 return(mapping.findForward("someCondition"));
}

10.4 Processing Requests with Action Objects 463

Example: One Result Mapping
Next, we present a very simple example that illustrates the six basic steps in using
Struts. For this example, an input form submits to an Action, the execute method
always yields the same result condition (regardless of user input), and then through a
mapping in struts-config.xml, the flow routes to a single, static, output page.

This example presents a simplified version of the Struts flow of control, but defers
many of the parts until later sections. Even this “simplified” example requires many
steps. If all these steps seem like more trouble than they are worth, you are right: For
this simple application, Struts is overkill. However, as we work our way toward more
complex examples, you will eventually see that all the extra effort is often more than
worth the bother.

Figure 10–3 shows a simplified Struts flow of control for this example. Following,
we outline the general flow of this example.

• The user completes the form and submits the page. Struts, based on the
URL, http://hostname/struts-actions/register1.do, determines to handle
the action by the class RegisterAction1. The RegisterAction1
class extends Action and is located in the coreservlets package.

• The execute method causes an action, returning a result condition.
Specifically, the action of RegisterAction1 returns only one
condition, "success"; regardless of the user input, the result is
always "success".

• Based on information in struts-config.xml, Struts forwards the request
to a result JSP for display to the user. Specifically, the configuration
file struts-config.xml has a single forward entry for the "success"
condition. The single return condition results in the display of
/WEB-INF/results/confirm-registration.jsp. Because the system uses
RequestDispatcher.forward to invoke the JSP page, the URL
shown in the browser will always show register1.do.

Next, we review the six steps in using Struts in the context of this simple example.

Step 1: Modify struts-config.xml
As presented earlier, the struts-config.xml file supports two main tasks: mapping
incoming addresses to Action objects, and mapping return condition to JSP
pages. We need to add action entries for the first task and forward entries for
the second.

C
hapter

10
■

The Struts Fram
ew

ork: B
asics

4
6
4

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Figure 10–3 Simplified flow of control in Struts.

10.4 Processing Requests with Action Objects 465

Map Incoming .do Address to Action Classes
In this example, we define an the action element in struts-config.xml to designate
that RegisterAction1 should handle requests for register1.do. To accomplish this
step, we add an action entry to action-mappings in struts-config.xml, as shown
in the following code fragment:

<action path="/register1"
 type="coreservlets.RegisterAction1">

...
</action>

Remember that .do is implied automatically in the path, so the actual incoming
URL will be http://hostname/webappname/register1.do.

The type attribute designates the fully qualified class name of the Action
object, coreservlets.RegisterAction1. We omit the other common action
attributes in this example (name, scope, and input); we use name and scope in
Section 10.5 (Handling Request Parameters with Form Beans) and use input in
Chapter 12 (The Struts Framework: Validating User Input).

Map Return Conditions to JSP Pages
In this example, we have only one forward element, for the "success" condition.
The forward entry in struts-config.xml is given here:

<forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>

Placing the result page within /WEB-INF means the user cannot directly access it. This
may not seem important in this highly simplified example where the JSP pages con-
sist of static content, but it is extremely important in later examples where the JSP
pages output the properties of beans that do not even exist until the Action object is
invoked.

The struts-config.xml is given in Listing 10.1. Note that in this file, all of the
examples and comments from the version in struts-blank have been removed.
We strongly recommend you follow the same practice: Keep the commented version
around for reference, but in your actual applications omit all irrelevant entries.

Chapter 10 ■ The Struts Framework: Basics466

Step 2: Define a Form Bean
In the simplified example, we pay no attention to the user input on the registration
page. Regardless, the user always sees the same output for a "success" condition.
Thus, this example uses no form bean.

Step 3: Create the Results Beans
In this simplified example, we are concentrating on the basic flow of control, so the
final JSP pages show simple static content and use no results beans.

Step 4: Create an Action Object to Handle the Request
To create an Action object, we follow the guidance outlined earlier.

• Place in a package. For this example, we place the class in the
coreservlets package:

package coreservlets;

Because we use a Web application name of struts-actions, we need to
place the class file in the /struts-actions/WEB-INF/classes/coreservlets

directory.
• Add Struts-specific import statements. For this example, we add

the following to our Action class:

import javax.servlet.http.*;
import org.apache.struts.action.*;

Listing 10.1 struts-actions/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <action-mappings>
 <action path="/register1"
 type="coreservlets.RegisterAction1">
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 ...
 </action-mappings>
</struts-config>

10.4 Processing Requests with Action Objects 467

• Extend the Action class. For this example, we define a
RegisterAction1 class that extends Action.

public class RegisterAction1 extends Action {
...

}

• Override the execute method. In this example, we override the
execute method to do nothing more than produce a "success"
condition. There is no other business logic.

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return(mapping.findForward("success"));
}

• Return mapping.findForward. In this example, only a
"success" return condition is possible. The mapping is given here:

mapping.findForward("success")

The complete Action class is given in Listing 10.2.

Listing 10.2
struts-actions/WEB-INF/classes/coreservlets/
RegisterAction1.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** An action that always returns a mapping to a "success"
 * page.
 */

public class RegisterAction1 extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return(mapping.findForward("success"));
 }
}

Chapter 10 ■ The Struts Framework: Basics468

Step 5: Create a Form That Invokes blah.do
For this example, we need an input form that invokes http://hostname/

struts-actions/register1.do. We place the input form in the top-level directory of the
struts-actions Web app, and use a relative URL for the ACTION. Normally, the input
form is built from Struts tags. Rather than overwhelm you with everything in the
framework at once, we delay discussing the Struts html: tags until Section 10.6
(Prepopulating and Redisplaying Input Forms). Thus, for now, we build the form
using normal HTML elements.

The registration JSP page, register1.jsp, is given in Listing 10.3.

Step 6: Display the Results in a JSP Page
For this example, we have only one output JSP page for the "success" condition.
As the output makes no use of the user input, the page simply has static content.

The results page, confirm-registration.jsp, is given in Listing 10.4. Notice that this
output JSP is located in /struts-actions/WEB-INF/results and thus is not directly
accessible by the user.

Finally, the complete directory structure of the files for this example is shown in
Figure 10–4.

Listing 10.3 struts-actions/register1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>New Account Registration</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>New Account Registration</H1>
<FORM ACTION="register1.do" METHOD="POST">
 Email address: <INPUT TYPE="TEXT" NAME="email">

 Password: <INPUT TYPE="PASSWORD" NAME="password">

 <INPUT TYPE="SUBMIT" VALUE="Sign Me Up!">
</FORM>
</CENTER>
</BODY></HTML>

10.4 Processing Requests with Action Objects 469

Results
Now, we present the results for this example, reviewing the processing flow through
the Struts framework.

• The user first invokes the input form through the URL http://localhost/

struts-actions/register1.jsp. This initial JSP page is shown in Figure 10–5.
• The user completes the form and submits it. The form’s ACTION

results in the URL http://localhost/struts-actions/register1.do.
• The URL is mapped by struts-config.xml to the RegisterAction1

class. The Struts system invokes the execute method of
RegisterAction1.

• The execute method returns a mapping.findForward for the
single condition, "success". This condition maps to /WEB-INF/

results/confirm-registration.jsp in struts-config.xml. Finally, the
request is forwarded to the output JSP page. See Figure 10–6. Notice
in the figure that the URL displayed to the user remains register1.do.

Listing 10.4 struts-actions/WEB-INF/results/confirm-registration.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Success</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>You have registered successfully.</H1>
Congratulations
</CENTER>
</BODY></HTML>

Figure 10–4 Complete file structure for “One Result Mapping” example.

Chapter 10 ■ The Struts Framework: Basics470

Example: Multiple Result Mappings
Next, we expand on the previous example, but now, instead of displaying a single out-
put JSP page, more than one output JSP page is possible. Which page is displayed
depends on the input the user provides on the registration page. This example is
more realistic, incorporating business logic in the Action. It also illustrates the sim-
plicity of setting up multiple return pages in the Struts configuration file.

Following, we outline the general flow of this example.

• The URL http://hostname/struts-actions/register2.do is handled by
the class RegisterAction2.

• The execute method of RegisterAction2 returns one of three
conditions: "success", "bad-address", or "bad-password".

Figure 10–5 Initial registration page. The ACTION submits to register1.do.

Figure 10–6 Successful registration page.

10.4 Processing Requests with Action Objects 471

• The three return conditions result in the following JSP pages
displayed to the user, respectively:

/WEB-INF/results/bad-address.jsp

/WEB-INF/results/bad-password.jsp

/WEB-INF/results/confirm-registration.jsp

Because the system uses RequestDispatcher.forward to invoke
the JSP page, the URL shown in the browser will always show
register2.do.

• The configuration file struts-config.xml has a forward entry for each
of the three possible output pages.

Next, we review the six steps in using Struts in the context of this modified
example.

Step 1: Modify struts-config.xml
As discussed earlier, the struts-config.xml file supports two main tasks: mapping
incoming addresses to Action objects, and mapping return condition to JSP pages.

Map Incoming .do Addresses to Action Classes
As before, we define an the action element in struts-config.xml to designate that
RegisterAction2 should handle requests for register2.do. Thus, we add an
action entry to action-mappings in struts-config.xml, as shown in the following
code fragment:

<action path="/register2"
 type="coreservlets.RegisterAction2">

...
</action>

Again, remember that .do is implied automatically in the path, so the actual
incoming URL will be http://hostname/struts-actions/register2.do.

Map Return Conditions to JSP Pages
In this modified example, we use multiple forward elements, one for each of the
possible return conditions ("success", "bad-address", and "bad-pass-
word"). The forward entries are defined in struts-config.xml as follows:

<forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
<forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
<forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>

Chapter 10 ■ The Struts Framework: Basics472

We place all the results pages within the /WEB-INF directory structure. Thus, the user
cannot directly access them through the browser. The complete struts-config.xml file
is given in Listing 10.5.

Step 2: Define a Form Bean
In general, the execute method uses a form bean to access the incoming request
parameters. For experienced Struts developers, this approach is easier and more
robust than repeatedly calling request.getParameter. However, this example is
complicated enough already, so we postpone form beans until a later example, and
call the familiar request.getParameter method instead.

Note that although you rarely call request.getParameter in real Struts appli-
cations, you frequently use the HttpServletRequest object for other purposes.
In particular, Struts provides no built-in facility for accessing cookies or standard
HTTP request headers, so request.getCookies and request.getHeader are
still used in Struts.

Step 3: Create the Results Beans
In this simplified example, we are concentrating on the basic flow of control, so the
final JSP pages show simple static content and use no results beans.

Listing 10.5 struts-actions/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
"http://struts.apache.org/dtds/struts-config_1_3.dtd">

<struts-config>
<action-mappings>

...
 <action path="/register2"
 type="coreservlets.RegisterAction2">
 <forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
 <forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 </action-mappings>
</struts-config>

10.4 Processing Requests with Action Objects 473

Step 4: Create an Action Object
to Handle the Request

To create an Action object, we follow the guidance outlined earlier. We place this
new RegisterAction2 class in the coreservlets package. In addition, we over-
ride the execute method to first use request.getParameter explicitly to look
up form input values and then specify a return condition based on the values of those
parameters. Later, in Section 10.5 (Handling Request Parameters with Form Beans)
we let Struts automatically populate a bean with the request data.

The logic for our execute method is shown here:

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 String email = request.getParameter("email");
 String password = request.getParameter("password");
 if ((email == null) ||
 (email.trim().length() < 3) ||
 (email.indexOf("@") == -1)) {
 return(mapping.findForward("bad-address"));
 } else if ((password == null) ||
 (password.trim().length() < 6)) {
 return(mapping.findForward("bad-password"));
 } else {
 return(mapping.findForward("success"));
 }
}

Three return conditions are possible:

• bad-address. If the e-mail address is missing, is less than three
characters long, or does not contain an @ sign, then return
mapping.findForward("bad-address").

• bad-password. If the password is missing or is less than six characters
long, then return mapping.findForward("bad-password").

• success. Otherwise, return mapping.findForward("success").

The complete RegisterAction2 class is given in Listing 10.6.

Chapter 10 ■ The Struts Framework: Basics474

Step 5: Create a Form That Invokes blah.do
This example requires an input form that invokes http://hostname/struts-actions/

register2.do. As before, we place the input form in the top-level directory of the
struts-actions Web app, and use a relative URL for the ACTION. The registration JSP
page, register2.jsp, is given in Listing 10.7.

Listing 10.6
struts-actions/WEB-INF/classes/coreservlets/
RegisterAction2.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** An action that has three possible mapping conditions:
 * bad-address if the e-mail address is missing or doesn't
 * contain @
 * bad-password if the password is missing or is less than 6
 * characters
 * success if e-mail address and password are OK
 */

public class RegisterAction2 extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 String email = request.getParameter("email");
 String password = request.getParameter("password");
 if ((email == null) ||
 (email.trim().length() < 3) ||
 (email.indexOf("@") == -1)) {
 return(mapping.findForward("bad-address"));
 } else if ((password == null) ||
 (password.trim().length() < 6)) {
 return(mapping.findForward("bad-password"));
 } else {
 return(mapping.findForward("success"));
 }
 }
}

10.4 Processing Requests with Action Objects 475

Step 6: Display the Results in a JSP Page
For this example, we have three possible output JSP pages, depending on whether
the user completed the input form correctly.

• bad-address.jsp. For condition "bad-address".
See Listing 10.8.

• bad-password.jsp. For condition "bad-password".
See Listing 10.9.

• confirm-registration.jsp. For condition "success".
See Listing 10.10.

Each output JSP page is located in /struts-actions/WEB-INF/results and thus is not
directly accessible by the user.

Also note that there are some significant problems in our validation logic. First,
we have weak rules about what constitutes a valid e-mail address. Second, the error
pages do not show the actual input values. Third, if the user enters an invalid e-mail
address and an invalid password, only one error is flagged. For now, we can live with
these deficiencies because our goal is to show the basic way to structure struts-con-
fig.xml and define an Action object. However, all of these deficiencies are
addressed with more advanced Struts features in Chapter 12 (The Struts Frame-
work: Validating User Input).

Finally, the complete file structure for this example is shown in Figure 10–7.

Listing 10.7 struts-actions/register2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>New Account Registration</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>New Account Registration</H1>
<FORM ACTION="register2.do" METHOD="POST">
 Email address: <INPUT TYPE="TEXT" NAME="email">

 Password: <INPUT TYPE="PASSWORD" NAME="password">

 <INPUT TYPE="SUBMIT" VALUE="Sign Me Up!">
</FORM>
</CENTER>
</BODY></HTML>

Chapter 10 ■ The Struts Framework: Basics476

Listing 10.8 struts-actions/WEB-INF/results/bad-address.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Illegal Email Address</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Illegal Email Address</H1>
Address must be of the form username@host.
Please try again.
</CENTER>
</BODY></HTML>

Listing 10.9 struts-actions/WEB-INF/results/bad-password.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Illegal Password</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Illegal Password</H1>
Password must contain at least six characters.
Please try again.
</CENTER>
</BODY></HTML>

Listing 10.10 struts-actions/WEB-INF/results/confirm-registration.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Success</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>You have registered successfully.</H1>
Congratulations
</CENTER>
</BODY></HTML>

10.4 Processing Requests with Action Objects 477

Results
Now, we present the results for this example, reviewing the processing flow through
the Struts framework.

• The user first invokes the input form through the URL http://localhost/

struts-actions/register2.jsp. This initial JSP page is shown in Figure
10–8.

• The user completes the form and submits it. The form’s ACTION
results in the URL http://localhost/struts-actions/register2.do.

• The URL is mapped by struts-config.xml to the RegisterAction2
class. The Struts system invokes the execute method of
RegisterAction2.

• The execute method returns a mapping.findForward condition
corresponding to three possible situations, based on the user input.

• If the user fills in an incorrect e-mail address, then the execute
method returns a "bad-address" condition. This condition maps
to /WEB-INF/results/bad-address.jsp in struts-config.xml. See
Figure 10–9.

• If the user fills in a correct e-mail address, but the password is
incorrect (fewer than six characters), the execute method returns a
"bad-password" condition. This condition maps to /WEB-INF/

results/bad-password.jsp in struts-config.xml. See Figure 10–10.
• If the user correctly fills in the e-mail address and password, then a

"success" condition is returned and the request is forwarded to
/WEB-INF/results/confirm-registration.jsp. See Figure 10–11.

Figure 10–7 File structure for “Multiple Result Mappings” example.

Chapter 10 ■ The Struts Framework: Basics478

Regardless of which final JSP page is displayed, the URL displayed to the user
remains register2.do.

Figure 10–8 Initial registration page. The ACTION submits to register2.do.

Figure 10–9 Registration form with an illegal e-mail address–one that doesn’t contain an
@ symbol (left). Response for a "bad-address" condition (right).

Figure 10–10 Registration form with an illegal password—one that doesn’t contain six
characters (left). Response for a "bad-password" condition (right).

10.4 Processing Requests with Action Objects 479

Combining Shared Condition
(Forward) Mappings

Suppose that you had several different action entries, all of which mapped "suc-
cess" to /WEB-INF/results/confirm-registration.jsp. Listing identical forward
entries within all the action elements is repetitive and requires you to make
changes to multiple forward entries if you rename the confirmation page. There-
fore, if the same result condition maps to the same JSP page in more than one
action entry, Struts lets you replace all the separate forward entries with a single
forward entry in a global-forwards section. Note that the global-forwards
section goes before action-mappings, not within it. The forward entries within
global-forwards have the same syntax and behavior as forward entries within
action, but they apply to any action. However, a forward entry within an action
always takes precedence over a forward entry in global-forwards. So, for
example, the following code fragment says “unless an action says otherwise, if the
return condition is "success", invoke confirm-registration.jsp.”

<global-forwards>
 <forward name="success"

path="/WEB-INF/results/confirm-registration.jsp"/>
</global-forwards>

To further illustrate the use of global forwards, Listing 10.11 presents a
s tr u t s - con f i g . xm l f i l e w i th t wo action s , RegisterAction1 an d
RegisterAction2. Both actions have a forward entry that maps "success"
to /WEB-INF/results/confirm-registration.jsp for the condition "success". As this
forward is common, it can be moved to a global-forward entry as shown in
Listing 10.12.

Figure 10–11 Successful registration page.

Chapter 10 ■ The Struts Framework: Basics480

Listing 10.11 Two actions with a duplicate forward entry

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <action-mappings>
 <action path="/register1"
 type="coreservlets.RegisterAction1">
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 <action path="/register2"
 type="coreservlets.RegisterAction2">
 <forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
 <forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 ...
 </action-mappings>
</struts-config>

Listing 10.12
Two actions with a common global-forward
entry

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <global-forwards>
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </global-forwards>
 <action-mappings>
 <action path="/register1"
 type="coreservlets.RegisterAction1">
 </action>
 <action path="/register2"
 type="coreservlets.RegisterAction2">

10.5 Handling Request Parameters with Form Beans 481

10.5 Handling Request Parameters
with Form Beans

In the previous example, we explicitly called request.getParameter to obtain
the form data. We used this manual approach because we wanted to concentrate only
on the action mappings, forward entries, and structure of the Action class. In a
real application, however, making repeated request.getParameter calls is
tedious and error prone. Fortunately, Struts has a very convenient and powerful facil-
ity that simplifies this process: form beans.

Basically, a form bean is little more than a JavaBean with property names that cor-
respond to request parameter names. When a user submits a request, the system
instantiates the bean; populates it based on the incoming request parameters (i.e., if
any incoming parameter name matches a bean property name, it calls the corre-
sponding setter method); stores it in request, session, or application scope;
and passes it to the execute method of your Action. That way, you don’t have to
call request.getParameter a zillion times, but instead get all of the form data in
one fell swoop. This idea is sort of what jsp:setProperty with property="*"
does (see Chapter 14 of Core Servlets and JavaServer Pages, Volume 1), except that
jsp:setProperty is exactly backward. It lets you do the process in a JSP page
(where you don’t want to), but doesn’t expose the underlying Java API (so you can
call it from Java code). In addition, Struts form beans have two additional capabili-
ties: a reset method that gets called before any of the setter methods is called, and
a validate method that is called after all of the setter methods is called. In this sec-
tion we concentrate on the main use of form beans to represent form data; in Chap-
ter 12 (The Struts Framework: Validating User Input) we see how the reset and
validate methods come in handy.

 <forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
 <forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
 </action>
 ...
 </action-mappings>
</struts-config>

Listing 10.12
Two actions with a common global-forward
entry (continued)

Chapter 10 ■ The Struts Framework: Basics482

Struts Flow of Control:
Updates for Bean Use

In Section 10.3 (The Struts Flow of Control and the Six Steps to Implementing It),
we presented the flow of the request through the Struts framework. Let’s review that
flow, but concentrate on the parts related to bean usage. See Figure 10–12 for a dia-
gram of the request flow.

• The user requests a form. In real applications, the input form is
almost always built with the Struts html: tags. Until we get to Section
10.6 (Prepopulating and Redisplaying Input Forms), however, we use
normal HTML.

• The form is submitted to a URL of the form blah.do. The form
contains an ACTION of the form blah.do. The Struts system receives
the request, where a mapping in struts-config.xml associates the
address with an Action object.

• The execute method of the Action object is invoked. Struts
instantiates a form bean; calls all setter methods for form parameter
names that match bean property names; stores the bean in request,
session, or application scope; and passes the bean to execute as
the second argument. Rather than calling request.getParameter
explicitly, the execute method just uses the form bean. The
execute method also invokes business logic and data-access logic,
placing the results in normal beans stored in request, session,
or application scope. The execute method then uses
mapping.findForward to return various conditions that are
mapped by struts-config.xml to various JSP pages.

• Struts forwards the request to the appropriate JSP page. Struts
invokes the JSP page given in the forward entry. That JSP page uses
bean:write or the JSP 2.0 EL to output the properties of either the
results beans or the form bean.

Next, we review the six basic steps in using Struts, emphasizing the bean-related
parts.

10.5
H

andling R
equest Param

eters w
ith Form

 B
eans

4
8

3

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write
to output bean

properties.

Populate bean based
on request parameters.

Supply as second
argument to execute.

Figure 10–12 Flow of request through the Struts framework. Boxed entries show updates for using beans.

Chapter 10 ■ The Struts Framework: Basics484

The Six Basic Steps in Using Struts
In Section 10.4 (Processing Requests with Action Objects), we showed the six basic
steps in using Struts in the context of a working application. In that section, we
focused on the simplest possible usage of the Action class; in this section, the
emphasis is on form beans and results beans.

Step 1: Modify struts-config.xml
You need to add three main entries to WEB-INF/struts-config.xml.

• Use action entries to map incoming .do addresses to Action
classes. This step is mostly done the same way as in the previous
examples, but now you also list the name and scope of the form bean,
as shown here:

<action path="..." type="..."
name="beanName" scope="request">

Unfortunately, the default scope in Struts is session, so always
specify scope="request" unless you have a specific need for
session tracking.

• Use forward entries to map return conditions to JSP pages.
This is done exactly the same way as in the previous examples.

• Declare form beans. Put a form-bean entry in the form-beans
section for each bean that is associated with an Action. Give each
form bean a name.

<form-beans>
<form-bean name="beanName" type="package.Class"/>

</form-beans>

In Section 10.4 (Processing Requests with Action Objects) we covered the first
two bullets; now we focus on the third.

Step 2: Define a Form Bean
A form bean is a class that extends ActionForm and represents the data submitted
by the user. It should have a bean property for each incoming request parameter. For
instance, if the input form has firstName and lastName parameters, the bean
must have setFirstName and setLastName methods, and usually also has get-
FirstName and getLastName methods.

When the user requests the URL corresponding to the Action, the bean is auto-
matically instantiated, the setter methods that match any nonempty parameters are
called, the bean is stored in the appropriate scope, and the bean is passed to the
execute method.

10.5 Handling Request Parameters with Form Beans 485

Step 3: Create the Results Beans
In the MVC architecture, results beans are just normal beans that hold data that the
presentation-layer JSP pages will display. The form bean represents the input data,
the data that came from the HTML form. In most applications, the more important
type of data is the result data, the data created by the business logic to represent the
results of the computation or database lookup.

For the beans to be available to the output JSP, you need to store them in the
request, session, or application scope. Simply call the setAttribute
method on the corresponding scope object (HttpServletRequest, HttpSession,
ServletContext) just as in normal non-Struts applications. It is also possible to
create extra properties in the form bean to be used to store the results. Both
approaches are common, although we usually find it slightly clearer to have separate
beans for the results.

Step 4: Define an Action Class to Handle the Requests
As presented in Section 10.4 (Processing Requests with Action Objects), each incom-
ing URL needs an Action object to handle the request. In Section 10.4, we used
request.getParameter in the execute method to retrieve the form data. When
using form beans, however, all you need to do is cast the ActionForm to your spe-
cific class, then access the already fully populated bean. For example:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

 throws Exception {
 MyFormBean myBean = (MyFormBean)form;

accessInputData(myBean);
...

}

Step 5: Create a Form That Invokes blah.do
In a real Struts application, you would use the Struts html:form custom tag to build
the input form. We postpone the discussion of html:form until Section 10.6 (Pre-
populating and Redisplaying Input Forms) and for now, use the standard HTML
FORM element.

Step 6: Display the Results in a JSP Page
Finally, you need to present the results in the JSP page specified in the forward ele-
ment. Use the Struts bean:write tag to output the bean properties.

<bean:write name="beanName" property="beanProperty"/>

Chapter 10 ■ The Struts Framework: Basics486

Also, if the servlet engine supports the JSP 2.0 API, then you may consider using
the JSP 2.0 EL as an alternative to the bean:write tag.

Understanding Form Beans
Form beans play a critical role in the Struts framework. As we see in this section,
form beans represent the incoming user data. As we will see in the next section, form
beans let you prepopulate and redisplay input forms. As we see in Chapter 12 (The
Struts Framework: Validating User Input), form beans support validation of the input
data. In all cases, you need to define a form-bean element in struts-config.xml and
write an ActionForm class.

Defining Form Beans in struts-config.xml
To use form beans, you have to perform two new tasks in struts-config.xml.

• Declare the form beans. Give each a name and a type.
• Update the action declarations. Use name to refer to the

form-bean name, and use scope="request" (usually),
scope="session" (when the bean needs to persist between
requests), or scope="application" (in the rare cases when the
bean needs to be accessible to any user).

We discuss each of these tasks in the following subsections.

Declare the Form Beans
To designate a form bean (i.e., an ActionForm object) to handle input data, add a
form-bean entry to the form-beans element in struts-config.xml. Place the
form-beans element before the action-mappings element.

Core Note

The form-beans section goes before the action-mappings element
in struts-config.xml, not inside action-mappings.

If supporting an existing application that uses global-exceptions and
global-forwards elements, place the form-bean entry before these.

We give an example of a form-bean declaration here:

<form-beans>
 <form-bean name="someFormBean"
 type="coreservlets.SomeFormBean"/>
</form-beans>

10.5 Handling Request Parameters with Form Beans 487

The name attribute is an alias for the form bean. Choose any name you want, but use
the same name in the action declaration. When defining the bean, you must also
identify the fully qualified class name of the bean. Use the type attribute for this
part. For a complete list of all form-bean attributes, see http://struts.apache.org/
dtds/struts-config_1_3.dtd.

Update the Action Declarations to Use Form Beans
After using form-bean to give your bean a name, you need to update your action
element so that Struts knows which ActionForm bean to instantiate and populate
for which Action.

Specifically, you need to add name and scope attributes to the action element.
For example,

<action path="/register"
 type="coreservlets.ActionWithBean"

name="userFormBean"
scope="request">

The name attribute must match a bean name from the form-beans section of
struts-config.xml. The scope specifies the location to both find and store the form
bean. If no bean of the given name is found in the specified scope, Struts instantiates
a new bean, populates it based on matching request parameter names to bean prop-
erty names, stores it in the specified scope, and passes it to the execute method. If
a bean of the given name is found in the specified scope (which could easily happen
with session-scoped data), Struts uses the existing bean instead of creating a new one.

The scope can be request, session, or application. Surprisingly, ses-
sion is the default, but the request scope is the more common place to store the
bean. If you do use the session scope for your bean, we recommend stating the
scope in the action, even though session is the default.

Writing an ActionForm
When writing a form bean, the class should adhere to the following guidelines.

• Extend the ActionForm class. All form beans must extend the
ActionForm class. In this section, it is not clear why Struts makes
you extend any particular class, but in Chapter 12 (The Struts
Framework: Validating User Input), we see that the ActionForm
class has two important inherited methods: reset (which is called
before any of the bean properties are set—i.e., setter methods
called) and validate (which is called after all the bean properties
are set).

http://struts.apache.org/dtds/struts-config_1_3.dtd
http://struts.apache.org/dtds/struts-config_1_3.dtd

Chapter 10 ■ The Struts Framework: Basics488

• Have a zero-argument constructor. When instantiating the bean,
the system always calls the default constructor. Remember that
Java gives you a zero-argument constructor automatically when no
constructors are defined, so there is often no need to explicitly define
a constructor.

• Have settable bean properties that correspond to request
parameter names. The bean must have a setBlah method
corresponding to each incoming request parameter named blah. The
properties should be of type String (i.e., each setBlah method
should take a String as an argument).

• Have gettable bean properties for each property that you want
to output in the JSP page. That is, the bean must have a getBlah
method corresponding to each bean property that you want to display
in JSP using bean:write or the JSP EL. In practice, form beans
almost always have getter and setter methods for every request
parameter, but sometimes have additional getter methods for
computed properties.

Displaying Bean Properties
Typically, after the Action processes the request, the system routes the request to
the output JSP page, where you display the results. In principle, you can use any of
the following approaches to display the bean properties in the JSP page. In practice,
the last two are the usual ones in Struts applications.

• Use JSP scripting elements. This approach is out of the question; it
is precisely what Struts is designed to avoid.

• Use jsp:useBean and jsp:getProperty. This approach is
possible, but these tags are a bit clumsy and verbose.

• Use the JSTL c:out tag. This approach is not a bad idea, but it is
hardly worth the bother using JSTL just for this situation. Unless you
are using JSTL in your application anyhow, don’t bother with c:out.

• Use JSP 2.0 EL. This is perhaps the best option if the server supports
JSP 2.0. For example:

Email Address: ${userFormBean.email}

However, if the application needs to run on multiple servers, some of
which support only JSP 1.2, this won’t be an option.

• Use the Struts bean:write tag. Because Struts was developed
before the JSP EL, and because the other options for bean access are
poor, Struts developed a custom tag library just for this purpose.
The bean:write tags are more succinct and readable than the

10.5 Handling Request Parameters with Form Beans 489

jsp:useBean tags (although not as succinct as the JSP EL), and
using them is by far the most common approach when using Struts.
For example:

Email Address: <bean:write name="userFormBean"
 property="email"/>

Note that, unlike c:out and the JSP 2.0 EL, bean:write automati-
cally filters special HTML characters, replacing < with < and >
with >. You can disable this behavior by specifying false for the
filter attribute, as in the following:

<bean:write name="userFormBean"
 property="email"
 filter="false"/>

Table 10.4 summarizes the common attributes of the bean:write tag. For a
complete listing of attributes, see http://struts.apache.org/1.x/struts-taglib/tlddoc/
bean/write.html.

Table 10.4 Common Attributes of bean:write

Attribute Description

name The name of the bean. For form beans, this is the name given in the
form-bean entry. For regular beans, this is the key supplied to
setAttribute. This attribute is required.

property The bean property to retrieve. Interestingly, this attribute is optional. If
you don’t specify a property, the tag calls toString on the bean
object.

scope The location in which to find the bean. The scope can be page,
request, session, or application. This attribute is optional, so if
you don’t specify it, Struts searches the scopes in the following order:
page, request, session, application. Most developers omit this
attribute.

filter Indicates if the bean property should be filtered for HTML characters,
for example, replacing < with < and replacing > with >. The
default value is true, so to turn filtering off, set to false.

http://struts.apache.org/1.x/struts-taglib/tlddoc/bean/write.html
http://struts.apache.org/1.x/struts-taglib/tlddoc/bean/write.html

Chapter 10 ■ The Struts Framework: Basics490

Example: Form and Results Beans
Now, we present an example using form and results beans. This example is similar to
the one presented in Section 10.4 (Processing Requests with Action Objects), but
uses both a form bean and a result bean.

This example further illustrates the processing flow of a request in the Struts
framework: An input form submits to a URL ending in something.do; the system
instantiates a form bean and populates it based on the request parameters; the form
bean is stored in request or session scope and then passed to the execute
method of the Action that matches the incoming URL; the execute method
applies business logic to create results beans and to determine a result condition; the
system invokes the JSP page that corresponds to the result condition; and the JSP
page outputs properties of both the form bean and the results beans.

Here is how that flow looks in this example:

• The URL http://hostname/struts-beans/register.do should be handled
by the class BeanRegisterAction.

• Instead of reading form data explicitly with request.getParameter,
the execute method of BeanRegisterAction uses a form bean that
is automatically populated with the request data.

• The execute method of BeanRegisterAction creates and stores a
results bean with a suggested correct e-mail address or password, and
returns one of three possible return conditions: "bad-address",
"bad-password", or "success".

• These three return values result in /WEB-INF/results/bad-address.jsp,
/WEB-INF/results/bad-password.jsp, and /WEB-INF/results/

confirm-registration.jsp, respectively.
• The JSP pages use bean:write to output bean properties.

Here are the new features of this example:

• The use of a bean to represent the incoming form data. This
form bean extends the ActionForm class, is declared in
struts-config.xml with the form-bean tag, and is referenced in the
action element with name and scope attributes.

• The use of a regular bean to represent custom results. As with
beans used with regular MVC, this bean need not extend any
particular class and requires no special struts-config.xml declarations.

• The use of the Struts bean:write tags to output bean
properties in the JSP page that displays the final results. This
approach is basically a more powerful and concise alternative to the
standard jsp:getProperty tag. Before we use bean:write, we
have to import the bean tag library as follows:

10.5 Handling Request Parameters with Form Beans 491

<%@ taglib uri="http://struts.apache.org/tags-bean"
prefix="bean" %>

Now, with this design in mind, we review the six steps in using Struts.

Step 1: Modify struts-config.xml
In Section 10.4 (Processing Requests with Action Objects) we showed how to modify
struts-config.xml to map incoming .do requests to Action classes and to map return
conditions to JSP pages. In this example we also declare a form bean (by using
form-bean) and associate it with the Action (by using name and scope in
action).

Map Incoming .do Addresses to Action Classes
As before, we use the action element in struts-config.xml. Here, we designate that
BeanRegisterAction should handle requests for /register.do. A fragment of the
action element is shown here:

<action path="/register
 type="coreservlets.BeanRegisterAction"

...
/>

Map Return Conditions to JSP Pages
As before, we use multiple forward elements, one for each possible return value of
the execute method. The three forward entries are shown here:

<forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
<forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
<forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>

Declare the Use of Any Form Beans
Next, we define a form-bean entry in struts-config.xml (within the forms-beans
element) with a name attribute of userFormBean and a type attribute of core-
servlets.UserFromBean, as shown here:

<form-beans>
 <form-bean name="userFormBean"
 type="coreservlets.UserFormBean"/>
</form-beans>

Chapter 10 ■ The Struts Framework: Basics492

Update action Declaration
After declaring the form-bean element, we add two new attributes to the action
element so that Struts knows about the form bean. Specifically, we add a name
attribute that matches the name from form-bean, and a scope attribute that spec-
ifies request, session, or application (usually request). Here is the updated
action:

<action path="/register"
 type="coreservlets.BeanRegisterAction"

name="userFormBean"
scope="request">

The complete listing for struts-config.xml is given in Listing 10.13.

Listing 10.13 struts-beans/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>

 <form-beans>
 <form-bean name="userFormBean"
 type="coreservlets.UserFormBean"/>
 </form-beans>

 <action-mappings>
 <action path="/register"
 type="coreservlets.BeanRegisterAction"
 name="userFormBean"
 scope="request">
 <forward name="bad-address"
 path="/WEB-INF/results/bad-address.jsp"/>
 <forward name="bad-password"
 path="/WEB-INF/results/bad-password.jsp"/>
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 </action-mappings>
</struts-config>

10.5 Handling Request Parameters with Form Beans 493

Step 2: Define a Form Bean
The form bean is automatically instantiated, filled in with the incoming form parame-
ters, stored in the request scope, and passed to the execute method of the Action
object. To create an ActionForm bean, we follow the guidance given earlier.

• Extend ActionForm class. For this example, we define a
UserFormBean that extends ActionForm.

public class UserFormBean extends ActionForm {
...

}

• Have a zero argument constructor. We rely on the no-argument
constructor provided by the Java compiler. The instance variables
(email and password) are set to default values when the bean is
instantiated.

• Have settable bean properties that correspond to request
parameters. The bean has String setter methods for the two
request parameters, email and password.

• Have gettable bean properties for each property that you want
to output in the JSP page. The form bean has getter methods for
the email and password bean properties, getEmail and
getPassword, respectively.

The complete listing for UserFormBean is given in Listing 10.14.

Listing 10.14
struts-beans/WEB-INF/classes/coreservlets/
UserFormBean.java

package coreservlets;

import org.apache.struts.action.*;

/** A FormBean for registration information. When the user
 * submits the input form, the Struts system automatically
 * populates the bean with the values from the email and
 * password request parameters.
 */

public class UserFormBean extends ActionForm {
 private String email = "Missing address";
 private String password = "Missing password";

Chapter 10 ■ The Struts Framework: Basics494

Step 3: Create the Results Beans
Results beans are the normal type of beans used in the MVC architecture (i.e.,
implemented with RequestDispatcher), need extend no particular class, and
require no definitions in the struts-config.xml file. Of course, results beans need to
have getter and setter methods like normal JavaBeans. In particular, they need getter
methods for each property that you want to output using bean:write or the JSP
EL.

For this example, we define a single results bean, SuggestionBean, to hold a
suggested e-mail address and password. If the user does not complete the input form
correctly, then we use a result bean on the output page to suggest alternative values.

To create the SuggestionBean, we use a very simple business logic class,
SuggestionUtils, that generates a bean with one of four possible candidate
e-mail addresses and a random password with a length of eight characters.

Listings 10.15 and 10.16 present our SuggestionBean and SuggestionUtils
classes, respectively.

 public String getEmail() {
 return(email);
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getPassword() {
 return(password);
 }

 public void setPassword(String password) {
 this.password = password;
 }
}

Listing 10.14
struts-beans/WEB-INF/classes/coreservlets/
UserFormBean.java (continued)

10.5 Handling Request Parameters with Form Beans 495

Listing 10.15
struts-beans/WEB-INF/classes/coreservlets/
SuggestionBean.java

package coreservlets;

/** JavaBean to hold a candidate email and address to
 * suggest to the user.
 */

public class SuggestionBean {
 private String email;
 private String password;

 public SuggestionBean(String email, String password) {
 this.email = email;
 this.password = password;
 }

 public String getEmail() {
 return(email);
 }

 public String getPassword() {
 return(password);
 }
}

Listing 10.16
struts-beans/WEB-INF/classes/coreservlets/
SuggestionUtils.java

package coreservlets;

/** Utility class to generate a SuggestionBean with
 * candidate email and password values.
 */

public class SuggestionUtils {
 private static String[] suggestedAddresses =
 { "president@whitehouse.gov",
 "gates@microsoft.com",
 "palmisano@ibm.com",
 "ellison@oracle.com" };
 private static String chars =
 "abcdefghijklmnopqrstuvwxyz0123456789#@$%^&*?!";

Chapter 10 ■ The Struts Framework: Basics496

Step 4: Define an Action Class to Handle the Requests
This Action is similar to the one in Section 10.4 (Processing Requests with Action
Objects), except that we do not call request.getParameter explicitly. Instead,
we extract the request parameters from the already populated form bean.

Specifically, in our BeanRegisterAction, we take the ActionForm argument
supplied to the execute method, cast it to UserFormBean (our concrete class that
extends ActionForm), and then call getter methods on that bean, as shown here:

UserFormBean userBean = (UserFormBean)form;
String email = userBean.getEmail();
String password = userBean.getPassword();

 public static SuggestionBean getSuggestionBean() {
 String address = randomString(suggestedAddresses);
 String password = randomString(chars, 8);
 return(new SuggestionBean(address, password));
 }

 public static int randomInt(int range) {
 return((int)(Math.random() * range));
 }

 public static String randomString(String[] strings) {
 return(strings[randomInt(strings.length)]);
 }

 public static char randomChar(String string) {
 return(string.charAt(randomInt(string.length())));
 }

 public static String randomString(String string,
 int length) {
 StringBuffer result = new StringBuffer();
 for(int i=0; i<length; i++) {
 result.append(randomChar(string));
 }
 return(result.toString());
 }
}

Listing 10.16
struts-beans/WEB-INF/classes/coreservlets/
SuggestionUtils.java (continued)

10.5 Handling Request Parameters with Form Beans 497

Also, in our BeanRegisterAction, we create a SuggestionBean and store it
in request scope for later display of the bean properties in a JSP page.

SuggestionBean suggestionBean =
 SuggestionUtils.getSuggestionBean();
request.setAttribute("suggestionBean", suggestionBean);

The complete code for BeanRegisterAction is given in Listing 10.17.

Listing 10.17
struts-beans/WEB-INF/classes/coreservlets/
BeanRegisterAction.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** An action that uses an ActionForm bean to hold the HTML
 * form parameters. Upon submission of the HTML form, the
 * Struts system automatically populates the email and
 * password fields of the UserFormBean.
 */

public class BeanRegisterAction extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

 UserFormBean userBean = (UserFormBean)form;
 String email = userBean.getEmail();
 String password = userBean.getPassword();
 SuggestionBean suggestionBean =
 SuggestionUtils.getSuggestionBean();
 request.setAttribute("suggestionBean", suggestionBean);
 if ((email == null) ||
 (email.trim().length() < 3) ||
 (email.indexOf("@") == -1)) {
 return(mapping.findForward("bad-address"));
 } else if ((password == null) ||
 (password.trim().length() < 6)) {
 return(mapping.findForward("bad-password"));
 } else {
 return(mapping.findForward("success"));
 }
 }
}

Chapter 10 ■ The Struts Framework: Basics498

Step 5: Create a Form That Invokes blah.do
For this example, we need an input form that invokes http://hostname/struts-beans/

register.do. This form is given in Listing 10.18.

Step 6: Display the Results in a JSP Page
We have three possible output pages, depending on the input provided by the user.
All three output pages rely on beans in the request scope.

To display the bean properties, we use the Struts bean:write tag. To use this
tag, however, we have to import the bean tag library in our JSP pages as follows:

<%@ taglib uri="http://struts.apache.org/tags-bean"
prefix="bean" %>

Here is a summary of the three output pages.

• bad-address3.jsp. This page is displayed if the user did not provide a
legal e-mail address. We use bean:write to display the bad e-mail
address from the form bean and to display a suggested e-mail address
from the suggestion bean. See bad-address.jsp in Listing 10.19.

• bad-password.jsp. This page is displayed if the user did not provide a
legal password. Again, we use bean:write to display the bad password
from the form bean and to display a suggested password from the
suggestion bean. See bad-password.jsp in Listing 10.20.

• confirm-registration.jsp. This page is displayed if the user provided
both a legal e-mail and password. The bean:write tag displays the
registration information from the form bean. See confirm-registration.jsp

in Listing 10.21.

Listing 10.18 struts-beans/register.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>New Account Registration</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>New Account Registration</H1>
<FORM ACTION="register.do" METHOD="POST">
 Email address: <INPUT TYPE="TEXT" NAME="email">

 Password: <INPUT TYPE="PASSWORD" NAME="password">

 <INPUT TYPE="SUBMIT" VALUE="Sign Me Up!">
</FORM>
</CENTER>
</BODY></HTML>

10.5 Handling Request Parameters with Form Beans 499

We place each output JSP page in /struts-beans/WEB-INF/results so that the user
cannot access the page directly (which would result in an error due to missing beans).

The file structure for this example is shown in Figure 10–13.

Listing 10.19 struts-beans/WEB-INF/results/bad-address.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Illegal Email Address</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Illegal Email Address</H1>
<%@ taglib uri="http://struts.apache.org/tags-bean"

prefix="bean" %>
The address
"<bean:write name="userFormBean" property="email"/>"
is not of the form username@hostname (e.g.,
<bean:write name="suggestionBean" property="email"/>).
<P>
Please try again.
</CENTER>
</BODY></HTML>

Listing 10.20 struts-beans/WEB-INF/results/bad-password.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Illegal Password</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Illegal Password</H1>
<%@ taglib uri="http://struts.apache.org/tags-bean"

prefix="bean" %>
The password
"<bean:write name="userFormBean" property="password"/>"
is too short; it must contain at least six characters.
Here is a possible password:
<bean:write name="suggestionBean" property="password"/>.
<P>
Please try again.
</CENTER>
</BODY></HTML>

Chapter 10 ■ The Struts Framework: Basics500

Listing 10.21 struts-beans/WEB-INF/results/confirm-registration.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Success</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>You have registered successfully.</H1>
<%@ taglib uri="http://struts.apache.org/tags-bean"

prefix="bean" %>

 Email Address:
 <bean:write name="userFormBean" property="email"/>
 Password:
 <bean:write name="userFormBean" property="password"/>

Congratulations.
</CENTER>
</BODY></HTML>

Figure 10–13 Complete file structure for “Form and Results Beans” example.

10.5 Handling Request Parameters with Form Beans 501

Results
Finally, we present the results for this example.

• The user invokes the input form with the URL http://localhost/
struts-beans/register.jsp. The initial JSP page is shown in Figure
10–14.

• The user completes this form and submits it to the server. The form’s
ACTION results in the URL http://localhost/struts-beans/register.do.

• Based on the form-bean associated with the action in
struts-config.xml, the Struts system populates a UserFormBean
with the request parameters and automatically places the bean in
the request scope.

• This URL address maps to the BeanRegisterAction class in
struts-config.xml. The Struts system then invokes the execute
method of BeanRegisterAction, passing the form bean as an
argument.

• The execute method creates a suggestion bean and places it in the
request scope. Then, it uses mapping.findForward to return one
of three possible conditions ("bad-address", "bad-password", or
"success").

• If the user fills in an invalid e-mail address, the execute method
returns a "bad-address" condition. This condition maps to
/WEB-INF/results/bad-address.jsp in struts-config.xml. The output
JSP page uses the bean:write tag to display properties from the
form bean and suggestion bean. See Figure 10–15.

• If the user fills in a valid e-mail address, but the password is invalid,
the execute method returns a "bad-password" condition.
This condition maps to /WEB-INF/results/bad-password.jsp in
struts-config.xml. The JSP page uses the bean:write tag to display
properties from the form bean and suggestion bean. See Figure
10–16.

• If the user correctly fills in the e-mail address and password, then a
"success" condition is reached and system invokes /WEB-INF/

results/confirm-registration.jsp. The bean:write tag displays the
user’s registration information from the form bean located in the
request scope. See Figure 10–17.

Regardless of the final JSP page displayed, because the page is invoked with
RequestDispatcher.forward and not response.sendRedirect, the URL
displayed to the user remains register.do.

Chapter 10 ■ The Struts Framework: Basics502

Figure 10–14 Initial registration page. The ACTION submits to register.do.

Figure 10–15 Registration form with an illegal e-mail address—doesn’t contain an @
symbol (left). Response for a "bad-address" condition (right). The bean:write tag
displays both the bad address (from the form bean) and suggested address (from the
suggestion bean).

10.5 Handling Request Parameters with Form Beans 503

Figure 10–16 Registration form with an illegal password—one that doesn’t contain six
characters (left). Response for a "bad-password" condition (right). The bean:write tag
displays both the bad password (from the form bean) and suggested password (from the
suggestion bean).

Figure 10–17 Successful registration page displayed to user. The legal address and
password, properties of the form bean in the request scope, are displayed in the response
page through the bean:write custom tag.

Chapter 10 ■ The Struts Framework: Basics504

10.6 Prepopulating and Redisplaying
Input Forms

In the previous section, we showed how to create form beans that the system instan-
tiates and populates automatically. We also showed how to output bean properties in
results pages. In this section, we show how to associate form beans with the input
page using the Struts html: tags. Associating form beans with input forms provides
three advantages:

• It guarantees that the request parameter names and the bean
property names stay in sync. If you write the form by hand, you
might change the parameter names but forget to change the bean.
When using the html: tags, you explicitly refer to the bean property
names when defining text fields or other input elements, so if you use
the wrong name, you get an immediate error message.

• It lets you prepopulate text fields with initial values. By
associating a bean with the input page, the initial text field values can
come from your application. So, for example, if the available health
plans change in your database, you don’t have to separately remember
to change hard-coded HTML on the page that asks employees to
choose a health plan.

• It lets you redisplay values in the text fields. If you send the
user back to the original form, the originally entered values are
automatically filled in. That’s because the form is already associated
with a bean, but now the bean is the one that was just created from the
request.

In the remainder of this chapter, we examine the html: tags in detail and explain
how you can use them to build your input pages.

Struts Flow of Control
First, we review the Struts flow of control, emphasizing use of the html: tags and
form beans to prepopulate fields of the input page. See Figure 10–18 for a diagram
of the Struts flow. Then, we give details on the syntax of the html: tags and provide
an example of their use.

10.6
Prepopulating and R

edisplaying Input Form
s

5
0

5

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean and pass
to execute method.

Use html:form
to build the form.

Figure 10–18 Flow of control in the Struts framework.

Chapter 10 ■ The Struts Framework: Basics506

• The user requests a form. This form is built with html:form,
html:text, and similar elements. These tags keep input field names
in sync with bean property names and let initial values of text fields
and other input elements come from the application.

• The form is submitted to a URL of the form blah.do. The
html:form tag automatically prepends the Web application name
and appends .do. That way, the action listed in the form and the path
listed in action match exactly. The URL is mapped in
struts-config.xml to an Action class.

• The execute method of the Action object is invoked. One of
the arguments to execute is a form bean that is automatically
created and whose properties are automatically populated based on
incoming request parameters of the same name. The Action invokes
business logic and data-access logic, placing the results in normal
beans stored in the request, session, or application scope.
The Action uses mapping.findForward to return a condition,
and the conditions are mapped by struts-config.xml to various JSP
pages.

• Struts forwards request to the appropriate JSP page. The page
can use bean:write or the JSP 2.0 EL to output bean properties.

The Six Basic Steps in Using Struts
Now, we review the six steps in using Struts, but emphasize the use of the html: tags
to associate beans with input forms.

1. Modify struts-config.xml. Map incoming URLs to Action objects,
map return conditions to JSP pages, and declare form beans.

2. Define a form bean. Define a class that extends ActionForm and
has properties that match the request parameter names. Declare the
bean in the form-beans section of struts-config.xml.

3. Create the results beans. If the output JSP pages need data result-
ing from the business logic, then create results beans to hold the data.
These beans need extend no special class and need not be declared in
struts-config.xml.

4. Define an Action class to handle the request. Create an Action
class with an execute method to process the request. Obtain input
data from the second argument to execute (the form bean). Call
business logic and data-access logic and store the results in beans. Use
mapping.findForward to return a result condition.

10.6 Prepopulating and Redisplaying Input Forms 507

5. Create a form that invokes blah.do. Create a form to collect the
user’s input. Use

<html:form action="/path-as-in-struts-config">

to instantiate a form bean and associate it with the form. Then, use
various input elements such as

<html:text name="beanPropertyName"/>

 The text field is prepopulated with the result of the getter method
corresponding to beanPropertyName, and, when the form is sub-
mitted, the text field value is stored in a form bean by calling the setter
method corresponding to beanPropertyName.

6. Display the results in a JSP page. Use bean:write or the JSP
expression language to output bean properties.

Details follow.

Step 1: Modify struts-config.xml
You need three main entries in struts-config.xml.

• Use action entries to map incoming .do addresses to Action
classes. The path attribute should exactly match the action of
html:form, the type attribute should be the fully qualified Action
class name, the name attribute should match a name from a
form-bean element, and the scope attribute should be request or
session.

• Use forward entries to map return conditions to JSP pages.
The name attribute should match a return condition from the
execute method of the Action and the path attribute should list a
JSP page in WEB-INF. If the same forward entry appears in more than
one action, you can move the entry to the global-forwards
section.

• Declare form beans. Put a form-bean entry in the form-beans section
for each bean that is associated with an Action. Give each form bean a
name.

Remember to restart the server after modifying struts-config.xml.

Chapter 10 ■ The Struts Framework: Basics508

Step 2: Define a Form Bean
Your bean will extend ActionForm and have a bean property for each incoming
request parameter. In addition to using the bean in the execute method of the
Action and in the final JSP pages, use the bean in the input form to give names and
values to the various input elements.

Step 3: Create the Results Beans
Results beans are normal beans as used in the MVC approach when implemented
directly with RequestDispatcher, and are created and used in the same way as
described in the previous section.

Step 4: Define an Action Class to Handle the Request
As in the previous section, rather than calling request.getParameter explicitly,
use the form bean passed as the second argument of the execute method. Cast the
ActionForm argument to the specific form bean class, then use the appropriate get-
ter methods to access the properties of the object.

Step 5: Create a Form That Invokes blah.do
Rather than using the standard HTML FORM and INPUT tags, use html:form and
html:text (and related tags). The html:form tag associates a bean with the form.
The html:text tag automatically uses bean property names for each text field
NAME and bean property values for each text field VALUE.

Step 6: Display the Results in a JSP Page
As before, the JSP page uses bean:write or the JSP EL to output properties of the
form and result beans.

Using Struts html: Tags
In this subsection, we examine the use of Struts html: tags. To effectively use these
tags, you need to understand the following techniques:

• Using the Struts html:form element instead of the standard HTML
FORM element to declare the form.

• Using html:text elements to declare the input fields of the form.

Before you use any of the html: tags, you must declare the tag library:

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>

10.6 Prepopulating and Redisplaying Input Forms 509

Using html:form to Declare the Form
The action attribute of the html:form tag should start with a slash and exactly
match the path attribute of the action element in struts-config.xml. For example,
if the path in struts-config.xml is given by

<action path="/actions/blah" ... >
 ...
</action>

then action in html:form should similarly be given by

<html:form action="/actions/blah">

Using the Struts html:form element instead of the standard HTML FORM element
yields these four results:

• A bean is associated with the form. Struts first finds an action
whose path matches the URL, then finds a form bean whose name
matches the name attribute of the action. Struts then instantiates a
bean of that type (or uses an existing one if such a bean is already in
the proper scope).

• The Web application prefix is prepended automatically. The
html:form tag understands the context path of the Web application.
Thus, you say

<html:form action="/actions/...">

to get

<FORM ACTION="/webAppPrefix/actions/..." ...>

• The .do suffix is appended automatically. As with the path in
struts-config.xml, the .do is implied in the action attribute. Thus,
say

<html:form action="/actions/blah">

to get

<FORM ACTION="/webAppPrefix/actions/blah.do" ...>

• The default METHOD is POST, not GET. You say

<html:form action="/actions/blah">

to get

<FORM ACTION="/webAppPrefix/actions/blah.do"
METHOD="POST">

Chapter 10 ■ The Struts Framework: Basics510

Using html:text to Declare the Input Fields of the Form
Use the html:text element and similar elements to declare the input fields of the
form. The NAME of each input field is taken from the bean property name, and the
VALUE is taken from the bean property value. For example, using

<html:text property="firstName"/>

is equivalent to first declaring a bean of the appropriate type, then doing

<INPUT TYPE="TEXT" NAME="firstName"
VALUE="<%= theBean.getFirstName() %>">

If the default bean property is null or an empty string, the text field is left blank.

Core Note

If the default value for the bean property is null or an empty string,
then the html:text tag leaves the text field empty.

Prepopulating Forms
In many cases, you want the values in the initial form to be derived from data in your
application. If the application data changes, you want the initial values of the form
fields to change automatically. Using the html: tags to associate a bean with the
form makes this process simple.

First, we summarize how to use the html: tags to prepopulate forms, then
present an example. The critical idea here is that for each input page you associate a
form bean that defines default values for each property. Through the right html:
tags, when the user first accesses the page, the system creates the bean and then pop-
ulates the input fields with the values from the bean properties.

To prepopulate forms, follow these steps:

• Use html:form for the main form. In the input form, you should
use html:form, and should specify

<html:form action="/path/blah">

not

<html:form action="/webAppPrefix/path/blah.do">

Also, POST is the default method for html:form.

10.6 Prepopulating and Redisplaying Input Forms 511

• Use html:text for text fields. In your input form, you should use

<html:text property="propertyName"/>

to declare input text fields. Each text field NAME is taken from the
bean property name, and each text field VALUE is taken from the bean
property value. If the bean property value is null or an empty string,
the text field is initially empty.

• Use html:xxxx for other input elements. In your input form,
use html:button, html:checkbox, html:textarea, and
so on, to declare submit buttons, checkboxes, text areas, and so on.
For details, see http://struts.apache.org/1.x/struts-taglib/
tagreference.html#struts-html.tld.

Example: Prepopulating Forms
In this example, we present a Web application with a registration page that uses a
form bean to prepopulate the input fields.

Here is the specific flow:

• The URL http://hostname/signup/actions/signup1.do is handled by
the Action class SignupAction1.

• The Action uses a ContactFormBean whose properties are
automatically filled with the registration page fields. The execute
method returns either a "missing-value" condition (if the first
name or last name is not provided) or a "success" condition (if both
fields are properly filled in).

• The two return conditions result in the display of either /WEB-INF/

results/missing-value.jsp or /WEB-INF/results/signup-confirmation.jsp.
The two JSP pages use bean:write to output values from both the
form bean (ContactFormBean) and the results bean
(MessageBean).

We next review the six steps in using Struts in this context.

Step 1: Modify struts-config.xml
The changes to struts-config.xml are very similar to the other examples already pre-
sented in this chapter.

Map Incoming .do Addresses to Action Classes
We use the action element to designate that SignupAction1 should handle
requests for signup1.do, as follows:

http://struts.apache.org/1.x/struts-taglib/tagreference.html#struts-html.tld
http://struts.apache.org/1.x/struts-taglib/tagreference.html#struts-html.tld

Chapter 10 ■ The Struts Framework: Basics512

<action path="/actions/signup1"
 type="coreservlets.SignupAction1" ...>
...
</action>

Map Return Conditions to JSP Pages
We use multiple forward elements, one for each possible return value of the exe-
cute method. However, because two different Actions eventually use the same
condition to indicate the same JSP page (a later example in this section builds on this
example), the repeated mapping goes in global-forwards as shown here:

<global-forwards>
 <forward name="success"
 path="/WEB-INF/results/signup-confirmation.jsp"/>
</global-forwards>

Declare the Use of Any Form Beans
As before, we use name and type attributes within form-bean, as shown next. We
also add name (the bean name as given in form-bean) and scope (request)
attributes to the action declaration.

<form-beans>
<form-bean name="contactFormBean"

type="coreservlets.ContactFormBean"/>
</form-beans>

The complete listing of struts-config.xml is given in Listing 10.22.

Listing 10.22 signup/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="contactFormBean"
 type="coreservlets.ContactFormBean"/>
 </form-beans>
 <global-forwards>
 <forward name="success"
 path="/WEB-INF/results/signup-confirmation.jsp"/>
 </global-forwards>
 <action-mappings>

10.6 Prepopulating and Redisplaying Input Forms 513

Step 2: Define a Form Bean
The form bean is similar to the earlier examples. Specifically, the form bean extends
ActionForm, is automatically filled in with the incoming form parameters, and is
passed to the execute method of the Action.

However, in this example, the input form also uses the form bean. The
html:form and html:text tags instruct Struts to create a new instance of the
form bean and use it to fill in the fields of the input form. The NAME of each input
field comes from the bean property name and the VALUE comes from the bean prop-
erty value.

Listing 10.23 presents a form bean corresponding to contact information for a
person who registers with our application. The bean contains properties for first
name, last name, e-mail address, and fax number.

 <action path="/actions/signup1"
 type="coreservlets.SignupAction1"
 name="contactFormBean"
 scope="request">
 <forward name="missing-value"
 path="/WEB-INF/results/missing-value.jsp"/>
 </action>
 ...
 </action-mappings>
</struts-config>

Listing 10.23
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Form bean for signup information. Struts will automatically
 * populate the bean with the incoming form parameters. The
 * class provides default values for input fields.
 */

Listing 10.22 signup/WEB-INF/struts-config.xml (continued)

Chapter 10 ■ The Struts Framework: Basics514

public class ContactFormBean extends ActionForm {
 private String firstName = "First name";
 private String lastName = "Last name";
 private String email = "user@host";
 private String faxNumber = "xxx-yyy-zzzz";
 private String[] defaultValues =
 { firstName, lastName, email, faxNumber };
 private String warning = "";

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return(email);
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getFaxNumber() {
 return(faxNumber);
 }

 public void setFaxNumber(String faxNumber) {
 this.faxNumber = faxNumber;
 }

 public String getWarning() {
 return(warning);
 }

Listing 10.23
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java (continued)

10.6 Prepopulating and Redisplaying Input Forms 515

Step 3: Create the Results Beans
As a reminder, the form bean represents the input data that came from the HTML
form. The results beans represent the results of any computations or database look-
ups. Results beans need not extend any particular class, and are not declared in
struts-config.xml.

For this example, we have a single results bean to hold any error messages for the
output pages. Listing 10.24 presents our simple MessageBean.

 public void setWarning(String baseWarning) {
 this.warning =
 "<H2>Missing or invalid " +
 baseWarning + "!</H2>";
 }

 public void clearWarning() {
 warning = "";
 }

 // The reset method below is ONLY needed if you make
 // the bean session-scoped. See the chapter on validation
 // for more details.

 public void reset(ActionMapping mapping,
 HttpServletRequest request) {
 clearWarning();
 }

 public boolean isMissing(String value) {
 if ((value == null) || (value.trim().equals(""))) {
 return(true);
 } else {
 for(int i=0; i<defaultValues.length; i++) {
 if (value.equals(defaultValues[i])) {
 return(true);
 }
 }
 return(false);
 }
 }
}

Listing 10.23
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java (continued)

Chapter 10 ■ The Struts Framework: Basics516

Step 4: Define an Action Class to
Handle the Requests

In this example, we check each of the required input parameters (first name, last
name, e-mail address, and fax number) to see if the value is missing. In this case, our
definition of “missing” is null, whitespace only, or unchanged from the default value.
If any values are missing, we use mapping.findForward to return a "miss-
ing-value" condition, which is mapped by struts-config.xml to an error page that
contains a message saying which parameter was missing. If all parameters are
present, we return "success", which results in a signup confirmation page.

The execute method is similar to that of the previous example. Again, we do not
call request.getParameter explicitly, but instead extract the request parameters
from the already populated form bean. Specifically, we take the ActionForm argu-
ment supplied to execute, cast it to ContactFormBean (our concrete class that
extends ActionForm), and then call getter methods on that bean.

Also, we pass the error message to the JSP page by creating a MessageBean and
storing it in the request scope. We put this code in a separate method (makeWarn-
ing) because in the next example we will override this method and store the error
message in the form bean instead of in a separate bean.

The full class definition is given in Listing 10.25.

Listing 10.24 signup/WEB-INF/classes/coreservlets/MessageBean.java

package coreservlets;

/** Simple bean to hold a message. */

public class MessageBean {
 private String message = "";

 public String getMessage() {
 return(message);
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

10.6 Prepopulating and Redisplaying Input Forms 517

Listing 10.25 signup/WEB-INF/classes/coreservlets/SignupAction1.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Action that receives the user input through a form bean.
 * If there is a problem with the input data, a description
 * of the problem is placed in a message bean.
 */

public class SignupAction1 extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 ContactFormBean userBean = (ContactFormBean)form;
 String firstName = userBean.getFirstName();
 String lastName = userBean.getLastName();
 String email = userBean.getEmail();
 String faxNumber = userBean.getFaxNumber();
 if (userBean.isMissing(firstName)) {
 makeWarning(request, "first name");
 return(mapping.findForward("missing-value"));
 } else if (userBean.isMissing(lastName)) {
 makeWarning(request, "last name");
 return(mapping.findForward("missing-value"));
 } else if ((userBean.isMissing(email)) ||
 (email.indexOf("@") == -1)) {
 makeWarning(request, "email address");
 return(mapping.findForward("missing-value"));
 } else if (userBean.isMissing(faxNumber)) {
 makeWarning(request, "fax number");
 return(mapping.findForward("missing-value"));
 } else {
 return(mapping.findForward("success"));
 }
 }

 protected void makeWarning(HttpServletRequest request,
 String message) {
 MessageBean messageBean = new MessageBean();
 messageBean.setMessage(message);
 request.setAttribute("messageBean", messageBean);
 }
}

Chapter 10 ■ The Struts Framework: Basics518

Step 5: Create a Form That Invokes blah.do
This form is very different from earlier ones in this chapter. Instead of using the stan-
dard HTML FORM tag, we import and use the Struts html:form tag. This tag auto-
matically generates the Web application prefix, appends the .do suffix, and sets the
default request method to POST. Here, we use

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<html:form action="/actions/signup1">

...
</html:form>

to get something equivalent to

<FORM ACTION="/signup/actions/signup1.do METHOD="POST">
...

</FORM>

Even more important, html:form causes the system to find or instantiate a bean
corresponding to the action. Because the action of html:form matches the
path attribute of the action declaration in struts-config.xml, a bean is automati-
cally created when the input page is accessed. The system determines the type of
bean to create by looking at the name that goes with the action, and finding the
form-bean with the same name. In this case, the bean is a ContactFormBean.

Next, the bean properties are used for the form fields. After declaring the form
and associating it with a bean, we use html:text to build input elements whose
NAME and VALUE are taken from the names and values of the form bean’s properties.

In essence, the code fragment

First name: <html:text property="firstName"/>

results in something similar to

<jsp:useBean id="contactBean" scope="request"
 class="coreservlets.ContactFormBean"/>
First name:
<INPUT TYPE="TEXT" NAME="firstName"
 VALUE="${contactBean.firstName}">

assuming that JSP 2.0 were available.
Listing 10.26 shows our complete input form.

10.6 Prepopulating and Redisplaying Input Forms 519

Step 6: Display the Results in a JSP Page
In this example, there are two possible result JSP pages: one for missing input (miss-

ing-value.jsp in Listing 10.27) and one for success (signup-confirmation.jsp in Listing
10.28).

We use the MessageBean to customize error messages for the output page in the
event of any missing input. That way, a separate page is not needed for each type of
error. As in earlier examples, we use bean:write to output bean properties without
having to resort to explicit Java code.

Listing 10.26 signup/forms/signup1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Sign Up</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Sign Up</H1>
Looking to receive late-breaking unverified virus alerts,
unknown ebay secrets, can't miss stock tips, works-in-your-sleep
diet plans, and all sorts of medications? Want to get them both
by email <I>and</I> by fax? Look no further: the Single Provider
of Alert Memos system lets you sign up for them all in one easy
request!
<P>
<CENTER>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<html:form action="/actions/signup1">
 First name: <html:text property="firstName"/>

 Last name: <html:text property="lastName"/>

 Email address: <html:text property="email"/>

 Fax number: <html:text property="faxNumber"/>

<html:submit value="Sign Me Up!"/>
</html:form>
</CENTER>
</BODY></HTML>

Chapter 10 ■ The Struts Framework: Basics520

Listing 10.27 signup/WEB-INF/results/missing-value.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>
<HEAD><TITLE>Missing or invalid
<bean:write name="messageBean" property="message"/>
</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H2>Missing or invalid
<bean:write name="messageBean" property="message"/>!</H2>
Please try again.
</CENTER>
</BODY></HTML>

Listing 10.28 signup/WEB-INF/results/signup-confirmation.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Confirmation</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Confirmation</H1>
Congratulations. You are now signed up for the
Single Provider of Alert Memos network!
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>

 First name:

<bean:write name="contactFormBean" property="firstName"/>
 Last name:

<bean:write name="contactFormBean" property="lastName"/>
 Email address:
 <bean:write name="contactFormBean" property="email"/>
 Fax number:

<bean:write name="contactFormBean" property="faxNumber"/>

To be removed from the network, send email
here.
</CENTER>
</BODY></HTML>

10.6 Prepopulating and Redisplaying Input Forms 521

Results
Finally, we present the results, pointing out the central ideas of this example.

• The user first invokes the HTML form through the URL http://localhost/
signup/forms/signup1.jsp. The initial JSP page is shown in Figure
10–19. Notice that Struts prepopulates the text fields with the values of
the ContactFormBean properties.

• The page uses html:form to build the FORM element. The action
in the html:form element is "/actions/signup1", resulting in
the URL http://localhost/signup/actions/signup1.do.

• Based on the action mapping in struts-config.xml, the system invokes
the execute method the SignupAction1. This method examines the
first name, last name, e-mail address, and fax number to see if any are
missing. If so, it calls makeWarning to store an error message in a
request-scoped bean and returns mapping.findForward with a
value of "missing-value". Otherwise it returns "success".

• The return values are mapped by struts-config.xml to /WEB-INF/results/

missing-value.jsp or /WEB-INF/results/signup-confirmation.jsp. In the
case of an error, the MessageBean stores the specific error message so
that the error page output is different in each of the error cases. See
Figure 10–20 for examples of a missing first name and missing last
name. Figure 10–21 shows the output page when the user provides
complete registration information.

Figure 10–19 Initial registration page. The initial values for the fields are derived from a
form bean.

Chapter 10 ■ The Struts Framework: Basics522

Figure 10–20 Output pages for incomplete registration information. The left image is the
response for a missing first name, and the right image is the response for a missing last
name. In both cases, the page uses the Struts bean:write tag to output the properties of a
message bean.

Figure 10–21 Confirmation page, confirm-registration.jsp.

10.6 Prepopulating and Redisplaying Input Forms 523

URL Design Strategies for Actions
When writing a Struts application, you have two general options for the URLs of
your forms and your actions: simple addresses (without subdirectories) and addresses
with subdirectories. Next, we examine both options.

Option 1: Designing Action
URLs without Subdirectories

The first design option is to use simple URLs (without subdirectories) for the
action of html:form and for the input forms. For this option, you would place the
input forms in the top-level directory of the Web application. Also, for the action of
html:form (and thus the path of the action definitions in struts-config.xml), you
would use a slash followed by a simple name. Table 10.5 provides examples of this
approach.

Option 2: Designing Action URLs
with Subdirectories

The second design option is to place your input forms in subdirectories and to use a
pseudo-directory for each action. The pseudo-directory for the action does not
physically exist; it is simply a virtual mapping understood by struts-config.xml. Table
10.6 gives examples of this design strategy.

Table 10.5 Designing URLs without Subdirectories

Design Element Approach

HTML form
location

Form placed in top-level Web application directory:
http://hostname/signup/signup1.jsp

action of
html:form

Form specifies top-level name:
<html:form action="/signup1"...>

action in
struts-config.xml

Action path gives a name only (no subdirectory):
<action path="/signup1".../>

Chapter 10 ■ The Struts Framework: Basics524

Advantages of Using Subdirectories
Using subdirectories has advantages both for the actions and the input forms.

Advantages for Actions

• Similar path for all action URLs. If all the action URLs start
with a similar path (/actions in this case) it is much easier to
distinguish action URLs from other URLs.

• Easier to apply filtering and security settings. If all the action
URLs start with a similar path, it is much easier to use web.xml to
apply filters or Web application security settings.

Advantages for Forms

• Simplifies organization and editing of forms. If the forms are in a
directory different than the other HTML or JSP pages, it simplifies
organization and editing of the forms.

• Improves filtering and security setting for forms. If all the forms
start with a similar path (/forms in this case), it is much easier to use
web.xml to apply filters or Web application security settings to the
forms.

Disadvantages of Using Subdirectories
Probably the biggest disadvantage to using subdirectories is that it confuses begin-
ning Struts developers. A common question for beginners is: “Where is the actions
directory?” There is no such directory! It simply is a part of the URL that is under-
stood by the Struts system. However, that is not so strange. After all, the main
address (blah.do) is also a mapping, not a virtual file (just as the URL pattern of nor-
mal servlets is just a mapping, not a real file).

Table 10.6 Designing URLs with Subdirectories

Design Element Approach

HTML form
location

Form placed in Web application subdirectory:
http://hostname/signup/forms/signup1.jsp

action of
html:form

Form specifies path with pseudo-directory name:
<html:form action="/actions/signup1"...>

action in
struts-config.xml

Action path gives a pseudo-directory name:
<action path="/actions/signup1"...>

10.6 Prepopulating and Redisplaying Input Forms 525

Redisplaying Forms
In the last subsection we examined the use of the html: tags to prepopulate form
input fields. The initial values came from a newly created bean.

Now, we show how to redisplay a form and base its values on bean whose proper-
ties have been filled in from a previous request. This second technique lets you sub-
mit a form, check if all the required data is supplied, and redisplay the form if any of
the data is missing or in the wrong format. Most important, when you redisplay the
form, you can maintain the previous values that the user entered and give an error
message indicating what values had problems. This section shows the basic idea, and
shows how the html: tags simplify the process. However, in Chapter 12 (The Struts
Framework: Validating User Input), we show how to take this idea even further.
Whether you do it the simple way shown in this section or the more advanced way
shown later, it is the html: tags that are the key to the redisplay process.

Figure 10–22 shows the control flow in the Struts framework, with updates for
redisplaying input forms. For now, we assume that the Action contains logic that
determines whether a problem exists with the submitted input parameters. If there is
such a problem, the execute method returns a condition that forwards the response
back to the input page. When the form is redisplayed, the input fields are populated
with their previous submitted values. The redisplayed input page should also summa-
rize the errors so that the user understands what corrections to make to the input.

Implementing this behavior involves two tasks:

1. Mapping an error condition back to the input page. In
struts-config.xml, provide a forward element that maps back to the
input page.

2. Storing and displaying an error message. Place a message in the
form bean to display on the input page. Given what we know so far,
placing an error message in a bean and displaying it on the input page
is the best we can do. However, in Chapter 12 (The Struts Frame-
work: Validating User Input), we cover many more options for validat-
ing input values and displaying error messages.

Details of these two tasks follow.

C
hapter

10
■

The Struts Fram
ew

ork: B
asics

5
2
6

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean and pass
to execute method.

Use html:form
to build the form.

forward to

Figure 10–22 Flow of request through the Struts framework showing updates for redisplaying forms. If there is a problem with the
input data, the Action returns a condition to forward the request back to the input page. When redisplaying the input pages, the
system fills the input fields from the previous values stored in the from bean.

10.6 Prepopulating and Redisplaying Input Forms 527

Task 1: Mapping Error Condition Back to Input Form
In struts-config.xml, the forward entry corresponding to missing data should sup-
ply the address of the input form, rather than supplying the address of a new JSP
page as before. For instance, instead of

<forward name="missing-value"
 path="/WEB-INF/results/missing-value.jsp"/>

you would say

<forward name="missing-value"
 path="/forms/originalInputPage.jsp"/>

Task 2: Creating and Displaying Error Messages
When redisplaying your input form, you should display an error message that tells
the user which data was incorrect. The Action can store this message in a separate
bean, or, more simply, in a special property of the form bean designed for storing
error messages. By making the default value of this bean property an empty string,
you can avoid logic that requires you to distinguish the initial display of the form
from a redisplay.

Listing 10.29 presents a template for a form bean that can hold error messages. To
display the errors on the input page, use bean:write, as shown here:

<bean:write name="someFormBean"
 property="warning"
 filter="false"/>

Notice that we use filter="false" because the error message contains HTML
tags. Also, note that this statement must come after the html:form tag on the input
page, because on the initial request, the bean does not exist until after html:form is
encountered.

Core Approach

Unless you use more advanced Struts validation features (see Chapter
12), use your form bean to hold any error messages. Then on your input
page, place the bean:write tag inside the html:form tag. In this
manner, on the initial request, the bean exists before execution of the
bean:write tag.

Chapter 10 ■ The Struts Framework: Basics528

Example: Redisplaying Forms
Next, we present an example that, when the input is incomplete, redisplays the input
form with correctly entered values maintained and missing values flagged with an
error message. This example is similar to the earlier one on prepopulating forms, but
instead of using a separate output page to display errors, the input page is redis-
played with the errors. Also, this example is different in that the messages are held in
the form bean instead of a separate results bean.

We outline the design strategy of this example next.

• The URL http://hostname/signup/actions/signup2.do is handled by
the Action class SignupAction2.

• We inherit the execute method of SignupAction1. That method
uses a ContactFormBean whose properties are automatically filled

Listing 10.29 Form bean template for supporting error messages

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Form bean that can hold warning messages. Use bean:write
 * to display the warnings.
 */

public class SomeFormBean extends ActionForm {
...

 private String warning = "";

...
public void setWarning(String baseWarning) {

 this.warning =
 "<H2>Missing or invalid " +
 baseWarning + "!</H2>";
 }

 public String getWarning() {
 return(warning);
 }

 public void clearWarning() {
 warning = "";
 }
}

10.6 Prepopulating and Redisplaying Input Forms 529

with the registration page fields. If the input data has any problems,
the inherited method calls the makeWarning method. However, we
override makeWarning so that it stores the error messages in the
form bean instead of in a new bean. Finally, as before, the inherited
execute method returns either a "missing-value" condition or a
"success" condition.

• The two return conditions result in the display of either /signup/
forms/signup2.jsp or /WEB-INF/results/signup-confirmation.jsp.
When redisplaying the input page, the bean:write tag displays any
errors.

Given this design strategy, we go through the six steps in using Struts.

Step 1: Modify struts-config.xml
The modifications to struts-config.xml are similar to those in the earlier examples.

Map Incoming .do Addresses to Action Classes
We use the action element to designate that SignupAction2 should handle
requests for signup2.do.

<action path="/actions/signup2"
 type="coreservlets.SignupAction2" ...>
...
</action>

Map Return Conditions to JSP Pages
We use multiple forward elements, one for each possible return value of the exe-
cute method. We still map the "success" condition to /WEB-INF/results/

signup-confirmation.jsp. However, for the "missing-value" condition, we spec-
ify the location of the original input form, rather than the location of a new JSP page.

<forward name="missing-value"
 path="/forms/signup2.jsp"/>

Declare the Use of Any Form Beans
As before, we use name and type attributes within form-bean, as shown next. We
also add name (the bean name as given in form-bean) and scope (request)
attributes to the action declaration.

<form-bean name="contactFormBean"
type="coreservlets.ContactFormBean"/>

The complete listing of struts-config.xml is given in Listing 10.30.

Chapter 10 ■ The Struts Framework: Basics530

Step 2: Define a Form Bean
This example uses the same ContactFormBean as before. However, in this exam-
ple we make use of the warning property. This property does not correspond to a
request parameter, but rather is used to send missing-entry warnings from the
Action back to the input form.

Our ContactFormBean is given in Listing 10.31.

Listing 10.30 signup/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="contactFormBean"
 type="coreservlets.ContactFormBean"/>
 </form-beans>
 <global-forwards>
 <forward name="success"
 path="/WEB-INF/results/signup-confirmation.jsp"/>
 </global-forwards>
 <action-mappings>

...
 <action path="/actions/signup2"
 type="coreservlets.SignupAction2"
 name="contactFormBean"
 scope="request">
 <forward name="missing-value"
 path="/forms/signup2.jsp"/>
 </action>
 </action-mappings>
</struts-config>

Listing 10.31
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

10.6 Prepopulating and Redisplaying Input Forms 531

/** Form bean for signup information. Struts will automatically
 * populate the bean with the incoming form parameters. The
 * class provides default values for input fields.
 */

public class ContactFormBean extends ActionForm {
 private String firstName = "First name";
 private String lastName = "Last name";
 private String email = "user@host";
 private String faxNumber = "xxx-yyy-zzzz";
 private String[] defaultValues =
 { firstName, lastName, email, faxNumber };
 private String warning = "";

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return(email);
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getFaxNumber() {
 return(faxNumber);
 }

Listing 10.31
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java (continued)

Chapter 10 ■ The Struts Framework: Basics532

 this.faxNumber = faxNumber;
 }

 public void setFaxNumber(String faxNumber) {
 public String getWarning() {
 return(warning);
 }

public void setWarning(String baseWarning) {
 this.warning =
 "<H2>Missing or invalid " +
 baseWarning + "!</H2>";
 }

 public void clearWarning() {
 warning = "";
 }

 // The reset method below is ONLY needed if you make
 // the bean session-scoped. See the chapter on validation
 // for more details.

 public void reset(ActionMapping mapping,
 HttpServletRequest request) {
 clearWarning();
 }

 public boolean isMissing(String value) {
 if ((value == null) || (value.trim().equals(""))) {
 return(true);
 } else {
 for(int i=0; i<defaultValues.length; i++) {
 if (value.equals(defaultValues[i])) {
 return(true);
 }
 }
 return(false);
 }
 }
}

Listing 10.31
signup/WEB-INF/classes/coreservlets/
ContactFormBean.java (continued)

10.6 Prepopulating and Redisplaying Input Forms 533

Step 3: Create Results Beans
Because the confirmation page merely displays the data entered by the user (which is
taken from the form bean), no results beans are needed.

The warning messages are shown in the original input form. Instead of using a
separate warning-message bean, as in the previous example, the warning message is
stored inside the form bean itself. This approach is convenient because the form
already has access to the form bean, because the html:form tag creates it (for
request-scoped beans) or verifies that it already exists (for session-scoped beans).

Step 4: Define an Action Class to Handle the Requests
Again, this example is very similar to the previous one. However, instead of storing
any missing-value warning messages in a separate bean that are displayed in a sepa-
rate JSP page, the warnings are stored in the form bean, which is used when the orig-
inal input page is redisplayed.

For this example, we want the same behavior in the execute method as the pre-
vious example, so we extend the earlier SignUpAction1 class and inherit exe-
cute, but we do need a new makeWarning method. Therefore we replace the
original makeWarning method with a version that stores the warnings in the form
bean (intended for the original input page) rather than in the MessageBean
(intended for a custom error page).

SignupAction2 is given in Listing 10.32.

Listing 10.32 signup/WEB-INF/classes/coreservlets/SignupAction2.java

package coreservlets;

import javax.servlet.http.*;

/** Action that stores the warning messages in the form bean.
 * This approach allows displaying the input form values
 * along with error messages on the input page.
 */

public class SignupAction2 extends SignupAction1 {
 protected void makeWarning(HttpServletRequest request,
 String message) {
 ContactFormBean contactFormBean =
 (ContactFormBean)request.getAttribute("contactFormBean");
 contactFormBean.setWarning(message);
 }
}

Chapter 10 ■ The Struts Framework: Basics534

Step 5: Create a Form That Invokes blah.do
This form is very similar to the one in the previous example. Again, we use the
html:form and html:text elements to build an HTML form whose form field
values are derived from bean properties.

We output a warning message that reminds the user which field he or she omitted.
The default warning message is an empty string, so rather than testing to see if the
form is being initially displayed or redisplayed, we always output the error message
(with filter="false" because the error message can contain HTML tags). If the
user accesses the form directly, the warning message is empty; if the system forwards
to the form, the warning message is filled in first.

Listing 10.33 shows the input form.

Listing 10.33 signup/forms/signup2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Sign Up</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Sign Up</H1>
Looking to receive late-breaking unverified virus alerts,
unknown ebay secrets, can't miss stock tips,
works-in-your-sleep diet plans, and
all sorts of medications? Want to get them both by email
<I>and</I> by fax? Look no further: the
Single Provider of Alert Memos
system lets you sign up for them all in one easy
request!
<P>
<CENTER>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>
<html:form action="/actions/signup2">
 <bean:write name="contactFormBean" property="warning"
 filter="false"/>
 First name: <html:text property="firstName"/>

 Last name: <html:text property="lastName"/>

 Email address: <html:text property="email"/>

 Fax number: <html:text property="faxNumber"/>

 <html:submit value="Sign Me Up!"/>
</html:form>
</CENTER>
</BODY></HTML>

10.6 Prepopulating and Redisplaying Input Forms 535

Results
Finally, we present the results of this example.

• The user first invokes the form with the URL http://localhost/
signup/forms/signup2.jsp. As before, the text fields are prepopulated
with values from the ContactFormBean properties. The page uses
html:form to build the FORM element. Also, the warning property
of the form bean is output, but the default value is an empty string.
See Figure 10–23.

• The action in the html:form element is /actions/signup2,
resulting in a URL of http://localhost/signup/actions/signup2.do
when the form is submitted. Based on the action mapping in
struts-config.xml, the system invokes the execute method the
SignupAction2. The inherited execute method from
SignupAction1 examines the input values to see if any are missing.
If so, it calls makeWarning and returns mapping.findForward
with a value of "missing-value". Otherwise it returns
"success".

• As before, the "success" condition is mapped by struts-config.xml

to /WEB-INF/results/signup-confirmation.jsp. However, the
"missing-value" condition is mapped by struts-config.xml

to /forms/signup2.jsp, the original input page. Because the
makeWarning method stores the error message in the form bean, the
input form can display it. Figures 10–24 and 10–25 show the redisplay
of the input page with error messages for a missing first name and a
missing last name, respectively. Figure 10–26 shows the output page
when the registration information is complete.

Chapter 10 ■ The Struts Framework: Basics536

Figure 10–23 Initial registration page. The form bean is instantiated and its properties are
used to prepopulate the input fields.

Figure 10–24 Redisplay of the input page as the result of a missing first name. Not only
does the form bean contain the previously submitted values (to redisplay in the input
fields), the bean also contains warning messages.

10.6 Prepopulating and Redisplaying Input Forms 537

Figure 10–25 Redisplay of the input page as a result of a missing last name. Again, the
form bean contains the previously submitted values as well as the warning message.

Figure 10–26 Result of a successful registration. The bean:write tag displays the
registration properties stored in the form bean.

THE STRUTS
FRAMEWORK:
DOING MORE

Topics in This Chapter

• Using properties files for messages

• Creating parameterized messages

• Internationalizing Web sites

• Using Tiles to create a common layout

• Creating template files and layout pieces

• Using Definitions to create parent layouts and derived
layouts

• Handling URLs correctly with html:rewrite

539

ChapterChapter 11

In Chapter 10 (The Struts Framework: Basics), we covered the basics of the Struts
framework for creating simple Web applications. However, Struts provides a lot more
capabilities than controlling request flow and populating beans.

In this chapter, we dig deeper into Struts, explaining how to use properties files
for messages in your JSP pages. The beauty of properties files is that you don’t have
to hard-code messages in your JSP files, but can place the messages in a common text
file. Properties files also make it easy to internationalize your Web site. All you need
to do is create local-specific properties files.

Also in this chapter, we introduce Struts Tiles, which is an excellent framework for
building your Web pages with a common look and feel. Struts Tiles goes far beyond
the jsp:include for including content in a page. Using the tiles: tags, you can
easily create a basic layout for your site, defining stubbed out sections for headers,
footers, and so on, and later create pages that provide definition for the stubbed out
sections.

11.1 Using Properties Files

In the simplest terms, properties files are nothing more text files that contain
name–value pairs, or rather, key–message pairs. By using bean:message from the
Struts tag library, you can easily retrieve messages from your properties file and dis-
play them on your JSP pages.

Chapter 11 ■ The Struts Framework: Doing More540

Advantages of Properties Files
Nearly all Struts developers use properties files to simplify development of their Web
applications. Following, we summarize the two greatest advantages of properties
files.

• Centralized updates. If the application uses a message in several
JSP pages, with properties files you can easily update a message with a
single change. This capability is consistent with the Struts philosophy
of making as many changes as possible in configuration files, not in
Java or JSP code.

• Internationalization (I18N). If you use messages pervasively in
your JSP pages, you can easily internationalize your application by
having multiple properties files corresponding to the locale (as with
standard I18N in Java). Simply create a file for each language that
requires support. For instance, to support English, Japanese, and
Spanish (Mexico dialect), you would create the following properties
files, respectively:

MessageResources.properties

MessageResources_ja.properties

MessageResources_es_mx.properties

In Section 11.2 (Internationalizing Applications), we cover I18N in
detail.

Struts Flow of Control—
Updates for Properties Files

Figure 11–1 shows the Struts flow of control with updates for properties files. The
main changes to the diagram are at the input and output pages. At the input page,
you could use the bean:message tag to add fixed strings from the properties file to
the JSP page. For instance, you might use fixed strings for the title or for labels of
input fields. Similarly, on your output pages, along with using bean:write to dis-
play messages from your results beans, you could use bean:message to display
fixed strings from the properties file.

11.1
U

sing Properties Files
5

4
1

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write to output bean
properties. Use bean:message

to output fixed strings.

Populate bean and pass
to execute method.

Use html:form to build the
form. Use bean:message

to output fixed strings.

Figure 11–1 Flow of request through the Struts framework with updates for using properties files. In both the input page and output
pages, the bean:message tag can display messages from the properties file.

Chapter 11 ■ The Struts Framework: Doing More542

Steps for Using Properties Files
Next, we summarize the changes needed in your application to support properties
files. These changes have four essential steps.

1. Create a properties file in WEB-INF/classes. Place a properties
file named MessageResources.properties in the WEB-INF/classes

directory.
2. Define strings in the properties file. Add messages to your proper-

ties file for later display on your JSP pages.
3. Load the properties file in struts-config.xml. So that Struts

knows about the properties file, you must place a resource file defini-
tion in struts-config.xml.

4. Output the messages in JSP pages. To display the messages in your
JSP pages, load the Struts bean tag library and output the messages
using bean:message.

Details follow.

Step 1: Create a Properties File in WEB-INF/classes
By default, Struts looks for a properties file in the WEB-INF/classes directory. This
properties file should always end in .properties. The most common name for the
properties file is MessageResources.properties.

Technically, you can have more than one properties file in your application; how-
ever, you must provide additional configuration information in struts-config.xml.

Step 2: Define Strings in the Properties File
In the properties file, provide key–message pairs. Each message must have a unique
key. For instance,

some.key1=first message
some.key2=second message
some.key3=some parameterized message: {0}

As seen in the last key–message pair, some.key3, a message can have a paramet-
ric place holder. At run time, when the bean:message tag retrieves the message,
you can provide a dynamic value to substitute for {0} in the message. We further
discuss parameterized messages later in this section and in Chapter 12 (The Struts
Framework: Validating User Input).

11.1 Using Properties Files 543

Step 3: Load the Properties File in struts-config.xml
To declare a properties file for your Struts application, add a message-resources
entry in struts-config.xml. Place this entry after your action-mappings, unless
maintaining an existing application with a controller section. In this case, place
the message-resources entry after the controller entry.

An example is shown here:

<message-resources parameter="MessageResources"
 null="false"/>

The parameter attribute refers to the CLASSPATH of the properties file, relative
to the WEB-INF/classes directory. The file extension, .properties, is implied. Thus, the
preceding example refers to the file, WEB-INF/classes/MessageResources.properties.
The null attribute determines whether Struts should flag missing messages not
found in the properties file. If set to false, a reference to a nonexistent message
yields a warning message like ???keyName???. Otherwise, a null string results
when retrieving a nonexistent message.

We do not recommend setting the null attribute to true. If the bean:message
tag sees a null for the message, then the tag may throw a JspException.

Core Approach

In the message-resources element, we recommend always specifying
false for the null attribute. This choice results in a warning message
like ???keyName??? instead of a null return value and a possible
JspException thrown by the bean:message tag.

By default, Struts assumes a single properties files for the application, but you can
declare additional properties files. To declare these extra files, add a unique key
attribute to identify each additional properties file. Two examples are shown here:

<message-resources parameter="MessageResources"/>
<message-resources parameter="LabelMessageResources"/>
 key="labels"/>

The first declaration defines a default properties file, MessageResources.properties.
The second declaration defines a supporting properties file, LabelMessage-

Resources.properties, with a key identifier of labels. Later, when retrieving mes-
sages from the nondefault file, you would specify a bundle attribute in the
bean:message tag that matches the key identifier, as in

<bean:message key="some.key" bundle="labels"/>

Chapter 11 ■ The Struts Framework: Doing More544

For reference, we summarize the common attr ibutes of the message-
resources element in Table 11.1. For a complete listing of all attributes, see
http://jakarta.apache.org/struts/dtds/struts-config_1_3.dtd.

Step 4: Output the Messages in JSP Pages
To display output messages in JSP pages, load the Struts bean tag library and access
the message through bean:message. Details follow.

• Load the tag library. So that you can use the bean tag library, add
the following taglib declaration to your JSP page:

<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>

• Output the messages using bean:message. To display a message
from the properties file, use bean:message where the value of the
key attribute corresponds to a key in the properties file. Some
examples are given here:

First message is <bean:message key="some.key1"/>
Second: <bean:message key="some.key2"/>
Third: <bean:message key="some.key3" arg0="replacement"/>

Table 11.1 Common Attributes of the message-resources Element in
struts-config.xml

Attribute Description

parameter The CLASSPATH of the properties file relative to WEB-INF/classes

directory. If you place the file in a subdirectory of classes, then
use the dotted package notation in the parameter value. For
example, if the properties file is located in WEB-INF/classes/

resources/Messages.properties, then the parameter value must
be resources.Messages. The file extension, .properties, is
always implied.

null Indicates whether a null string value or a warning message should
be returned when a message is not found in the properties file. Set
to false to return a warning message in the form ???keyName???;
otherwise, set to true (default) to return a null.

key Specifies a unique identifier for the properties file. To retrieve messages
from a nondefault properties file add a bundle attribute to the
bean:message tag. The value for the bundle attribute must match
the corresponding value for the resource key attribute.

http://jakarta.apache.org/struts/dtds/struts-config_1_3.dtd

11.1 Using Properties Files 545

In the last example, the tag has an arg0 attribute, which defines a
parametric replacement value for {0} in the message. We cover
parametric values later in this chapter.

If not using the default properties file for your messages, clarify
the file through the bundle attribute, as shown here:

<bean:message bundle="otherPropertiesFile"
key="some.key4"/>

Table 11.2 summarizes the common attributes for the bean:message tag.
For a complete listing of all attributes, see http://struts.apache.org/1.x/

struts-taglib/ tlddoc/bean/message.html.
Be aware that unlike the bean:write custom tag, the bean:message tag pro-

vides no mechanism to filter the message for HTML characters. See Core Servlets
and JavaServer Pages, Volume 1, for cross-site scripting attacks.

Core Warning

The bean:message tag does not filter the string for special HTML
characters. If dynamically providing strings from user input as parametric
values, the JSP page may be at risk to cross-site scripting attacks.

Table 11.2 Common Attributes of the bean:message Tag

Attribute Description

key The key identifies which message to retrieve from the properties
file.

bundle The bundle identifies which properties file to user for retrieve the
message. This attribute is only necessary if not using the default proper-
ties file.

arg0
arg1
arg2
arg3
arg4

Replacement for the first through fifth parametric values in the mes-
sage, respectively. For instance, the tag substitutes the value of arg0
for {0} in the message, the value for arg1 for {1} in the message, and
so on. The tag does not filter the value for special HTML characters.

http://struts.apache.org/1.x/struts-taglib/tlddoc/bean/message.html
http://struts.apache.org/1.x/struts-taglib/tlddoc/bean/message.html

Chapter 11 ■ The Struts Framework: Doing More546

Example: Simple Messages
Next, we illustrate the use of a properties file to display messages in an application.
In this example, we provide a simple registration page that, on submission, always
routes to a results page. Both the registration page and results page build their out-
put from messages in a properties file.

Following, we outline the design strategy for this example.

• The URL, http://hostname/struts-messages/actions/register.do, is
handled by the class RegistrationAction.

• The RegistrationAction returns a "success" condition
regardless of the user input.

• The "success" condition maps to a single results page, /WEB-INF/

results/confirm-registration.jsp.
• The titles and text labels in the input and results pages come from a

properties file.

Given this design strategy, we go through the six steps of using Struts.

Step 1: Modify struts-config.xml
As presented in Chapter 10 (The Struts Framework: Basics), we need to follow the
general guidance of: mapping an incoming .do address to an Action class, mapping
return conditions to JSP pages, and declaring any form beans. In addition, we now
must also declare a properties file.

Map Incoming .do Addresses to Action Classes
The action element designates that RegistrationAction should handle

requests from /actions/register.do, as shown in the following code fragment:

<action path="/actions/register"
 type="coreservlets.RegistrationAction"
 name="registrationBean"
 scope="request">

...
</action>

Map Return Conditions to JSP Pages
We use the forward element to map the single "success" condition to /WEB-INF/

results/confirm-registration.jsp, as shown here:

<forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>

11.1 Using Properties Files 547

Declare the Use of Any Form Beans
Here, we declare a single form-bean entry with name and type attributes. The
form bean, registrationBean, handles the submitted request parameters.

<form-beans>
 <form-bean name="registrationBean"
 type="coreservlets.RegistrationFormBean"/>
</form-beans>

Declare a Properties File
After the action-mappings entry, we declare a single properties file, as shown

here:

<message-resources parameter="MessageResources"
 null="false"/>

We place the MessageResources.properties file in the WEB-INF/classes directory.
For the null attribute, we specify a value of false, requesting that any messages
not found in the properties file yield a warning message like ???keyName???.

The complete listing of struts-config.xml is given in Listing 11.1 and the proper-
ties file for this example is given in Listing 11.2.

Listing 11.1 struts-messages/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="registrationBean"
 type="coreservlets.RegistrationFormBean"/>
 </form-beans>
 <action-mappings>
 <action path="/actions/register"
 type="coreservlets.RegistrationAction"
 name="registrationBean"
 scope="request">
 <forward name="success"
 path="/WEB-INF/results/confirm-registration.jsp"/>
 </action>
 </action-mappings>

<message-resources parameter="MessageResources"
 null="false"/>
</struts-config>

Chapter 11 ■ The Struts Framework: Doing More548

Step 2: Define a Form Bean
This example uses a single form bean, RegistrationFormBean, shown in Listing
11.3. The bean simply holds registration information (first name, last name, e-mail
address).

Listing 11.2
struts-messages/WEB-INF/classes/
MessageResources.properties

-- Custom messages for struts-messages application --
form.title=Registration
form.firstName=First name
form.lastName=Last name
form.emailAddress=Email address
form.buttonLabel=Register Me
form.successString=Success

Listing 11.3
struts-messages/WEB-INF/classes/
RegistrationFormBean.java

package coreservlets;

import org.apache.struts.action.*;

/** A simple form bean for registration information. */

public class RegistrationFormBean extends ActionForm {
 private String firstName, lastName, emailAddress;

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

11.1 Using Properties Files 549

Step 3: Create the Results Beans
This example does not use results beans.

Step 4: Define an Action Class to Handle Requests
Our RegistrationAction always returns a "success" condition, regardless of
the registration information entered by the user.

The code for RegistrationAction is given in Listing 11.4.

 public String getEmailAddress() {
 return(emailAddress);
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }
}

Listing 11.4 struts-messages/WEB-INF/classes/RegistrationAction.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** A simple Action that always routes to a single
 * output page corresponding to a success condition.
 */

public class RegistrationAction extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return(mapping.findForward("success"));
 }
}

Listing 11.3
struts-messages/WEB-INF/classes/
RegistrationFormBean.java (continued)

Chapter 11 ■ The Struts Framework: Doing More550

Step 5: Create a Form That Invokes blah.do
For this example, we define an input form, register.jsp, that invokes http://hostname/

struts-messages/actions/register.do. The registration page is given in Listing 11.5.
Instead of directly listing headings, prompts, and textual messages for the registra-

tion page, they are taken from the properties file using bean:message. That way, if
we later decide to change the messages (or if we have multiple versions in different
languages), we can update the messages without modifying the actual JSP pages.
Furthermore, as we use some of the prompts in more than one page, extracting the
prompts from the properties file limits changes to one location, even though the
prompts are used in multiple locations.

Step 6: Display the Results in a JSP Page
We have a single results page, WEB-INF/results/confirm-registration.jsp. This output
page relies on the RegistrationFormBean passed to it through the request
scope. The JSP page uses bean:write to display the registration information. In

Listing 11.5 struts-messages/forms/register.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE><bean:message key="form.title"/></TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1><bean:message key="form.title"/></H1>
<CENTER>
<html:form action="/actions/register">

<bean:message key="form.firstName"/>:
 <html:text property="firstName"/>

<bean:message key="form.lastName"/>:
 <html:text property="lastName"/>

 <bean:message key="form.emailAddress"/>:

 <html:text property="emailAddress"/>

 <html:submit>
 <bean:message key="form.buttonLabel"/>
 </html:submit>
</html:form>
</CENTER>
</BODY></HTML>

11.1 Using Properties Files 551

addition, the page uses bean:message to display the title, the heading, and regis-
tration labels from the properties file.

The results page, confirm-registration.jsp, is given in Listing 11.6.

Results
Figure 11–2 presents both the registration page and results page. In both cases, the
browser title, heading, and field labels are retrieved from a single properties file,
WEB-INF/classes/MessageResources.properties.

Listing 11.6 WEB-INF/results/confirm-registration.jsp

<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>
<bean:message key="form.title"/>:
<bean:message key="form.successString"/>
</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6"><CENTER>
<H1>
<bean:message key="form.title"/>:
<bean:message key="form.successString"/>
</H1>

 <bean:message key="form.firstName"/>:
 <bean:write name="registrationBean"
 property="firstName"/>
 <bean:message key="form.lastName"/>:
 <bean:write name="registrationBean"
 property="lastName"/>
 <bean:message key="form.emailAddress"/>:
 <bean:write name="registrationBean"
 property="emailAddress"/>

</CENTER>
</BODY></HTML>

Chapter 11 ■ The Struts Framework: Doing More552

Dynamic Keys
With the bean:message tag, you can dynamically provide the value for the key
attribute; the key value need not be hard-coded.

Following is an example of a properties file that contains key–message pairs for
three different colleges. The key is the acronym for the college, whereas the message
is the full college name.

Properties File
jhu=Johns Hopkins University
upenn=University of Pennsylvania
umbc=University of Maryland Baltimore County

In a JSP page, assuming that a variable or a bean contains information about the
school of interest, you could provide the key dynamically when retrieving the mes-
sage. Two examples follow, the first using the JSP 2.0 EL and the second using a tra-
ditional JSP scripting expression.

<bean:message key="${user.school}"/>
<bean:message key="<%= school %>"/>

Figure 11–2 Result of struts-message Web application. For both the input page and
results page, bean:message retrieves the title, heading, and field labels from the default
properties file.

11.1 Using Properties Files 553

Parameterized Messages
With properties files, you can parameterize any message. Parameterization allows
you, during run time, to dynamically substitute a text value into the message at a
desired location, thus creating a customized message.

To support parameterized messages, you first need to modify your messages to
indicate where the parameterized substitution should occur and then to provide the
parametric replacements in the JSP pages. Details follow.

• Add parametric notation to messages in properties file. Use {n}
notation in each message to indicate the location of the nth parametric
substitution. Up to five substitutions are allowed, {0} ... {4}. Two
examples are shown here:

error.missing=You must enter {0}, you idiot!
error.number={0} and {1} are not whole numbers!

• Provide parametric replacements in JSP pages. On the JSP page
use the bean:message tag to retrieve the parameterized message
from the properties file. For each {n} in the message, provide a
corresponding argN attribute in the tag. During execution, the tag
substitutes the value for the arg attribute in the message at the
proper location. Examples follow.

<bean:message key="error.missing"
 arg0="your first name"/>
<bean:message key="error.number"
 arg0="<%= Math.random() %>"
 arg1="${user.firstName}"/>

As seen, you can provide the value for the attribute using JSP scripting
expressions or the JSP 2.0 EL. Unfortunately, you cannot take the
argument value directly from the properties file itself, so parameter-
ized messages may not work well with I18N.

Remember that when providing values for the parameterized messages, the
bean:message tag does not filter the argument for special HTML characters.

Later in Chapter 12 (The Struts Framework: Validating User Input), we present
a Struts application that uses parameterized messages in conjunction with input
validation.

Chapter 11 ■ The Struts Framework: Doing More554

11.2 Internationalizing Applications

With Struts, creating an I18N application is easy! Well, maybe. If you’re willing to
pull all the titles, labels, and text messages from a properties file, then you can easily
I18N your application. Just create a properties file for each language (locale) you
would like to support.

Loading Locale-Specific
Properties Files

Struts attempts to use a properties file that corresponds to the browser language set-
ting. When requesting a page, the browser sends an Accept-Language request
header, listing the language preferences. If no corresponding language (locale) file is
found, then Struts uses the default properties file.

• Default properties file. To establish a default properties file, use the
message-resource element in struts-config.xml. Thus, when you say

<message-resources parameter="someName" ...>

the file, WEB-INF/classes/someName.properties, is loaded and treated
as the default language file.

• Locale-specific properties file. Based on the languages accepted
by the browser, Struts automatically looks for specialized files
corresponding to the locale. A locale-specific file has the same
name as the default properties file, but is augmented with local
information, for example, someName_es.properties (Spanish locale)
or someName_fr.properties (French locale). Entries from a more
specific file override entries from the default file. The locale can also
be set explicitly (e.g., based on incoming checkbox value) in an
Action with setLocale.

Setting Language Preferences
in Browsers

Once you have created a locale-specific properties file, you will want to test it in your
Web application. To test the new properties file, change the language settings in the
browser.

We next explain how to change the language setting in Internet Explorer and
Firefox.

11.2 Internationalizing Applications 555

• Internet Explorer. For Internet Explorer, select Tools from the
menu, then Internet Options, then Languages. Click the Add button
to select other languages for the browser. To change the language
preference order, use the Move Up button. See the Internet Explorer
screen in Figure 11–3.

• Firefox. For Firefox, select Tools from the menu, then Options, then
Languages. Click the Add button to select other languages for the
browser. To change the language preference order, use the Move Up
button. See the Firefox screen in Figure 11–3.

Example: Internationalizing for
English, Spanish, and French

Now, we present an example where we internationalize the earlier registration appli-
cation (Example: Simple Message) from Section 11.1 (Using Properties Files). For
our modified application to support English, Spanish, and French, all we need to do
is create two new properties files, MessageResources_es.properties for the Spanish
locale and MessageResources_fr.properties for the French locale. The assumption is
that the original file, MessageResources.properties, supports the English locale.

The two new locale f i les con ta in all the same messages a s Message-

Resources.properties (Listing 11.2), but translated to the appropriate language. The
keys remain the same. This change is all that is needed to internationalize the appli-
cation for Spanish and French—there are no changes to any configuration files or
code!

Figure 11–3 Changing language preferences in Internet Explorer (left) and in Firefox
(right).

Chapter 11 ■ The Struts Framework: Doing More556

Listing 11.7 presents our MessageResources_es properties file, with the messages
translated to Spanish, and Listing 11.8 presents our MessageResources_fr properties
file, with the messages translated to French.

Results
To test our application for Spanish users, we first changed the language preference in
Internet Explorer to “Spanish (International Sort) [es]”, restarted the browser, and
then accessed the registration page. Figure 11–4 shows the result for a Spanish
locale.

Similarly, for French users, we changed the language setting in Internet Explorer
to “French (France) [fr]”. Figure 11–5 shows the result for a French locale.

Listing 11.7
struts-messages/WEB-INF/classes/
MessageResources_es.properties

-- Custom messages for struts-messages application --
form.title=Registro
form.firstName=Primer nombre
form.lastName=Apellido
form.emailAddress=Dirección de email
form.buttonLabel=Coloqúeme
form.successString=Éxito

Listing 11.8
struts-messages/WEB-INF/classes/
MessageResources_fr.properties

-- Custom messages for struts-messages application --
form.title=Enregistrement
form.firstName=Prénom
form.lastName=Nom
form.emailAddress=Adresse électronique
form.buttonLabel=Enregistrez Moi
form.successString=Succès

11.2 Internationalizing Applications 557

Figure 11–4 Result of the registration application with the browser language preference
set to Spanish.

Figure 11–5 Result of the registration application with the browser language preference
set to French.

Chapter 11 ■ The Struts Framework: Doing More558

11.3 Laying Out Pages with Tiles

Many Web sites contain pages with a common header, footer, and menu. If you
would like to build your site with a common look and feel, starting with Struts Tiles is
an excellent choice.

With the Tiles framework, you create a common page layout for your site, and
then, based on the layout, use Struts tiles: tags to include JSP fragments and
Strings for the main pages of the site. The Tiles approach is much more powerful
than the traditional jsp:include for including files in a JSP page. In fact, some
developers find themselves using Struts just for the Tiles capability, as the servlet/JSP
community has very few equivalents. In future versions of Tiles, you’ll be able to use
the technology outside of Struts.

Tiles Motivations
We summarize three main reasons to choose Tiles for your site design.

• Reuse (not rewrite) repeated sections of pages. For similar
content, you need only write sections once and then use Tiles to easily
add those sections to your JSP pages.

• Simplify the creation of similar pages. With templates you can
easily lay out similar pages in your site. Then, with the layout
template, provide specific content for the layout pieces.

• Increase flexibility and ease of maintenance. With Tiles you get a
lot more flexibility than with the traditional <jsp:include .../>
tag. Plus, the supporting elements for Tiles (handling relative URLs,
inheritance) eases the overall maintenance of the site.

Prerequisites for Tiles
Next we cover three prerequisites for using Tiles in a Struts application. For com-
plete information on Tiles, see http://struts.apache.org/1.x/struts-tiles/.

• Update the Struts servlet definition in web.xml. To support Tiles
add a chainConfig parameter for the ActionServlet in web.xml,
as shown here:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>

http://struts.apache.org/1.x/struts-tiles/

11.3 Laying Out Pages with Tiles 559

<init-param>
 <param-name>chainConfig</param-name>
 <param-value>
 org/apache/struts/tiles/chain-config.xml
 </param-value>
 </init-param>
 ...
</servlet>

An example of a complete servlet entry in web.xml is given in
Listing 11.9

• Add Tiles plug-in to struts-config.xml. After your
message-resources element in struts-config.xml, add an entry for
the Tiles plug-in, as shown here:

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
 <!-- Path to XML definition file -->

<set-property property="definitions-config"
 value="/WEB-INF/tiles-defs.xml" />
 <!-- Set Module-awareness to true -->

<set-property property="moduleAware" value="true" />
</plug-in>

If you started with struts-blank-1.3.5, then this change already exists
in struts-config.xml. You just need to uncomment out the plug-in
element.

• Add Tiles JAR file to application. From either the full distribution
of Struts, struts-1.3.5-all.zip, or the examples file, struts-1.3.5-apps.zip,
add struts-tiles-1.3.5.jar to your WEB-INF/lib directory. Note that this
JAR file is already included with struts-blank-1.3.5.

If you download the struts-blank application from the book’s source code archive,
http://volume2.coreservlets.com/, we include all the necessary changes for Tiles.

Listing 11.9 Struts servlet entry in web.xml supporting Tiles

<!-- Standard Action Servlet Configured for Tiles -->
<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>

http://volume2.coreservlets.com/

Chapter 11 ■ The Struts Framework: Doing More560

The Four Basic Steps in Using Tiles
Next, we outline the four basic steps in using Tiles. Afterward, we cover these steps
in detail and present a simple example.

1. Sketch out the desired page layout. Before you start writing a tem-
plate file for your Tiles layout, we recommend that you first sketch the
page layout on a piece of paper.

2. Make a template file that represents the layout. In your template
file, use tiles:insert wherever a layout piece should go. Also, use
tiles:getAsString wherever changeable text goes. Both of these
tiles: tags act as stubs that are later filled in by other pieces. To pre-
vent direct access of the template file, place the file in WEB-INF or a
subdirectory.

3. Create JSP pages that define the layout pieces. Create JSP pages
that contain HTML fragments for the stubbed-out layout. To prevent
direct access to these fragments, also put them in WEB-INF or a subdi-
rectory.

4. Create JSP pages that populate the layout. Use tiles:insert
to refer to the layout from Step 1. Use tiles:put to specify the lay-
out pieces that apply to each specific page. Unless forwarding the
request to the output pages through RequestDispatcher, place
these JSP files in a directory normally accessible by the user (do not
place them in WEB-INF).

Details follow.

Step 1: Sketch the Desired Layout
Many Web sites have groups of pages that have a common general layout, for
instance, a common header, title, menu, body, and footer. Often only one or two parts
(e.g., the body) changes from page to page.

<init-param>
 <param-name>chainConfig</param-name>
 <param-value>
 org/apache/struts/tiles/chain-config.xml
 </param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

Listing 11.9 Struts servlet entry in web.xml supporting Tiles (continued)

11.3 Laying Out Pages with Tiles 561

Before you create a template file for your site layout, sketch the layout on one or
more pieces of paper. On the sketches, identify those areas that are consistent
throughout the pages. Each one of these identified areas will most likely become part
of your template layout.

Step 2: Make a Template File That
Represents the Layout

The template file captures the general layout of your Web site. In the template file
you use various tiles: tags to indicate where a layout piece (JSP fragment) or
changeable text should go. Layout pieces are for larger sections of the page, whereas
a changeable text section may be for a title or header.

With the template file you establish stubs (tiles: tags) that are later filled in by
other pieces (file or text string). A loose analogy of Tiles is to think of a layout tem-
plate as an interface. The layout page has abstract methods or rather stubs, that
define the pieces of the layout. Later, you provide pages with definitions that popu-
late the layout. These pages implement the layout interface and provide concrete
definitions for each stub.

When creating template files, follow this general guidance:

• Use regular HTML for parts that never change. Static parts
should remain in HTML.

• Declare the Struts tiles tag library. Before you use any of the
tiles: tags in your JSP pages, you must declare the Tiles tag library,
as shown here:

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>

• Use tiles:insert to stub out sections that will be filled in by
layout pieces. The tiles:insert tag stubs out replacement
sections in the template. As example is shown here:

<tiles:insert attribute="header"/>

The attribute names the stubbed section. Later, a JSP page using
the template will reference the header stub and provide a JSP frag-
ment to insert at that location.

• Use tiles:getAsString to stub out locations that will be
replaced by simple text. Similarly, the tiles:getAsString
allows you to stub out locations for String substitutions (versus a stub
for a file). For instance, the following tiles:getAsString tag
creates a String stub named title:

<tiles:getAsString name="title"/>

Chapter 11 ■ The Struts Framework: Doing More562

The JSP page using the template will later provide a real string to sub-
stitute at the layout location.

• Template files should never be accessed directly. Template files
simply define a layout for use by other pages. The user should not be
able to access template files directly. Put template files in WEB-INF to
avoid accidental access.

Core Approach

Place the template files that represent your site layout in WEB-INF or a
subdirectory. In this manner, the user cannot access these template files
directly.

For more information on tiles: tags, see http://struts.apache.org/1.x/
struts-tiles/tagreference.html.

Step 3: Create JSP Pages That
Define the Layout Pieces

After you create the layout template, then create the JSP pages that define the layout
pieces to apply to the template. These are regular JSP page fragments that define
portions of an HTML page. When creating these pieces, keep the following in mind.

• Do not repeat HTML header elements. The layout pieces are
HTML fragments inserted into a parent JSP page. Be sure not to
repeat HTML elements such as DOCTYPE, HEAD, BODY, and so on,
that are defined in the template file from Step 2.

• They can themselves be tiles. The pieces could themselves also be
tiles, defining additional layouts.

• Pages can use the bean: and html: Struts tags. As the layout
pieces are simply JSP page fragments, they can use the familiar bean:
and html: tags. Furthermore, these layout pieces can access any
beans stored in the request scope.

• Layout pieces should never be accessed directly. As with the
layout template file, the layout pieces (JSP fragments) should not be
directly accessible by the user. Put the layout pieces in WEB-INF or a
subdirectory to avoid accidental access by the user.

http://struts.apache.org/1.x/struts-tiles/tagreference.html
http://struts.apache.org/1.x/struts-tiles/tagreference.html

11.3 Laying Out Pages with Tiles 563

Step 4: Create JSP Pages That Populate the Layout
The last step is to create the Web pages that populate the layout. These pages specify
which layout template file to use and which layout pieces to apply to the template. To
create these pages, perform the following steps:

• Declare the Struts Tiles tag library. So you can use the tiles:
tags, declare the tag library, as shown.

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>

• Use tiles:insert to refer to the layout template file. With the
tiles:insert tag, provide a page attribute to specify the layout
template to use (the template file you created in Step 2). An example
is shown here:

<tiles:insert page="/WEB-INF/tiles/layout.jsp">
 ...
</tiles:insert>

• Use tiles:put to specify the layout pieces. With the
tiles:put tag, specify which specific layout pieces (JSP page
fragments or strings) to substitute into the template stubs for this
particular page. Use the name attribute to reference the stubbed
tile element in the template. Use the value attribute to provide the
substitution file or string. See the following example:

<tiles:insert page="/WEB-INF/tiles/layout.jsp">
 <tiles:put name="title" value="Page 1 Title"/>
 <tiles:put name="header"
 value="/WEB-INF/tiles/header.jsp"/>
</tiles:insert>

Example: Simple Tiles
Next, we present a simple Tiles example. Even though this example doesn’t contain
much page content, it does demonstrate the four basic steps in using Tiles.

Step 1: Sketch Out the Desired Layout
Figure 11–6 shows a sketch of two representative pages for our Web site. We want a
similar look and feel for our pages and, as seen, both pages have five common areas
suitable for a Tiles design: header, footer, title, menu, and body.

Chapter 11 ■ The Struts Framework: Doing More564

Step 2: Make a Template File That
Represents the Layout

Listing 11.10 presents our template file for the page layout. This template file sets up
the structure for each page in our Web site. We use the tiles:getAsString tag
to stub out the title of the page and use the tiles:insert tag to stub out the
header, body, menu, and footer. To prevent access by the user, we place this layout
template file in the WEB-INF/tiles directory.

Figure 11–6 Initial sketch of pages for a Web site to help identify a common layout.

Header

Title

Menu

Body

Footer

11.3 Laying Out Pages with Tiles 565

Step 3: Create JSP Pages That
Define the Layout Pieces

Listings 11.11 through 11.15 present our JSP fragments for each stubbed-out section
in the template file. As these are page fragments and not a full HTML page, they
contain no DOCTYPE, HEAD, or BODY sections. Like the template file, we place these
page fragments in the WEB-INF/tiles directory so that the user can’t access them
directly.

Listing 11.10 tiles-test/WEB-INF/tiles/layout.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE><tiles:getAsString name="title"/></TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<tiles:insert attribute="header"/>
<P>
<TABLE BORDER=5 ALIGN="CENTER" BGCOLOR="#EF8429">
 <TR><TH>
 <tiles:getAsString name="title"/>
</TH></TR></TABLE>
<P>
<TABLE WIDTH=75 ALIGN="LEFT" CELLSPACING="5">
<TR><TD><tiles:insert attribute="menu"/></TD></TR>
</TABLE>
<tiles:insert attribute="body"/>
<BR CLEAR="ALL">
<HR>
<tiles:insert attribute="footer"/>
</BODY></HTML>

Listing 11.11 tiles-test/WEB-INF/tiles/header.jsp

<TABLE BORDER=1 WIDTH="100%" BGCOLOR="#C0C0C0">
 <TR><TH>Header</TH></TR>
</TABLE>

Chapter 11 ■ The Struts Framework: Doing More566

Listing 11.12 tiles-test/WEB-INF/tiles/menu.jsp

<TABLE BORDER=1 BGCOLOR="#C0C0C0" WIDTH=75 HEIGHT=200>
 <TR><TH>Menu</TH></TR>
</TABLE>

Listing 11.13 tiles-test/WEB-INF/tiles/body1.jsp

<H1 ALIGN="CENTER">Page 1 Body</H1>
Blah, blah, blah, blah, blah.
Blah, blah, blah, blah, blah.
<P>
Yadda, yadda, yadda, yadda.
Yadda, yadda, yadda, yadda.
<P>
...

Listing 11.14 tiles-test/WEB-INF/tiles/body2.jsp

<H1 ALIGN="CENTER">Page 2 Body</H1>
Blah, blah, blah, blah, blah.
Blah, blah, blah, blah, blah.
<P>
Yadda, yadda, yadda, yadda.
Yadda, yadda, yadda, yadda.
<P>
...

Listing 11.15 tiles-test/WEB-INF/tiles/footer.jsp

<TABLE BORDER=1 WIDTH="100%" BGCOLOR="#C0C0C0">
 <TR><TH>Footer</TH></TR>
</TABLE>

11.3 Laying Out Pages with Tiles 567

Step 4: Create JSP Pages That Populate the Layout
Finally, we create the two pages that use the layout template created in Step 2. See
Listings 11.16 and 11.17. Both these JSP pages initially use the tiles:insert tag
to declare that WEB-INF/tiles/layout.jsp is the template file for the JSP page. Within
the tiles:insert tag we add tiles:put tags to specify the content for each stub
in the template file.

We place both these pages in the root directory of the Web application for direct
access by the user (whereas the layout template file and JSP fragments are placed
under WEB-INF).

Results
Figure 11–7 presents the results for page1.jsp and page2.jsp. Even though both
pages have a similar layout (same template), each page uniquely defines which file
and text fragments to substitute into the template stubs.

Listing 11.16 tiles-test/page1.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/layout.jsp">
 <tiles:put name="title" value="Page 1 Title"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="menu" value="/WEB-INF/tiles/menu.jsp"/>
 <tiles:put name="body" value="/WEB-INF/tiles/body1.jsp"/>
 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Listing 11.17 tiles-test/page2.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/layout.jsp">
 <tiles:put name="title" value="Page 2 Title"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="menu" value="/WEB-INF/tiles/menu.jsp"/>
 <tiles:put name="body" value="/WEB-INF/tiles/body2.jsp"/>
 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Chapter 11 ■ The Struts Framework: Doing More568

Handling Relative URLs
In a JSP page, many elements are referenced with relative URLs, for instance
images, style sheets, and simple hypertext links. However, with Tiles, JSP fragments
cannot use URLs that refer to page elements relative to the location of the layout
pieces (i.e., the JSP fragments). That’s because the layout pieces are actually located
in WEB-INF, not in a location immediately accessible by the browser.

Often to resolve this issue, you use a URL beginning with a slash, for instance,
/images/pic.jpg. However, depending on how the page is built, such a URL may be ren-
dered relative to the host (http://host/) and not the application context (http://host/
webApp/). For the earlier situation, you could use request.getContextPath to
prefix the URL with the application context, but then you need to add a scriptlet.

Figure 11–7 Result of page1.jsp and page2.jsp. Both pages use Tiles with a common
layout template file for the header, footer, title, menu, and body.

11.3 Laying Out Pages with Tiles 569

Using html:rewrite
To properly handle relative URLs from a layout page or JSP fragment, use the
html:rewrite tag. The html:rewrite tag lets you use URLs beginning with
slashes. You simply list the path relative to Web application home, then the tag auto-
matically prefixes the Web application (context path) to the front of the URL. For
instance,

<html:rewrite page="/dir/somePage.html"/>

produces a result similar to

/webApp/dir/somePage.html;jsessionid=72C6D63791839

Be aware that the tag also appends the session ID to the address. Remember that to
use the html:rewrite tag, you must import the Struts html: tag library.

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>

Here are a couple of practical examples.

• From layout template:

<LINK REL="STYLESHEET"
 HREF="<html:rewrite page='/css/styles.css'/>"
 TYPE="text/css">

• From JSP fragment or layout template:

<IMG SRC="<html:rewrite page='/images/pic.jpg'/>" ...>

When calling an Action class, use the action attribute instead of the page
attribute. For instance, instead of

<html:rewrite page='/actions/logout.do'/>

use

<html:rewrite action='/actions/logout'/>

For more details on html:rewrite, see http://struts.apache.org/1.x/
struts-taglib/tlddoc/html/rewrite.html.

http://struts.apache.org/1.x/struts-taglib/tlddoc/html/rewrite.html
http://struts.apache.org/1.x/struts-taglib/tlddoc/html/rewrite.html

Chapter 11 ■ The Struts Framework: Doing More570

Example: e-boats Application
Now, we present a more detailed Tiles example based on an online store that sells
boats. Our design approach is the following:

• Uses Tiles for pages that have similar layouts. For this Web site, only
the title and body changes from page to page.

• Uses stylesheet to control look and feel. The stylesheet controls the
background colors for different areas of the pages, as well as the font
and font size for various titles.

• Uses images on multiple pages. Each page references an image from
the /images directory. So that the image URL is referenced correctly,
we use the html:rewrite tag.

Next, we cover the four basic steps in using Tiles for this example.

Step 1: Sketch Out the Desired Layout
Figure 11–8 presents the desired page layout for our e-boats application. Annota-
tions indicate the various sections of the page that are suitable for a Tiles layout, as
described in the list that follows the figure.

Figure 11–8 Sketch of typical page for e-boats application. Annotations show the various
sections of the page suitable for a Tiles layout.

Header

Title

Search Menu

Footer

Body

11.3 Laying Out Pages with Tiles 571

• Header. This section provides basic site navigation and is the same
for all pages.

• Title. This section provides the title for the page. Even though each
page has a title section, the actual title is unique to each particular
page.

• Search menu. This section provides search capabilities for either the
Web site or the Internet. The search menu is present on all pages.

• Body. This section provides the main content for the page. In addition
to basic text information, each page presents an image of a boat.

• Footer. This section provides supplementary links to site information
and is present on all pages.

Step 2: Make a Template File That Represents the Layout
Listing 11.18 presents our template file, main-layout.jsp, that captures the general
layout of all the pages for our site. We place this file in the WEB-INF/tiles directory so
that the user does not have direct access to the template.

This layout template file sets the stage for all the main pages in the site and
defines the locations for the Tiles sections identified earlier in Step 1. Specifically, we
use the tiles:insert tag to stub out the header, search menu, body, and footer
sections. For the title section, we use the tiles:getAsString tag.

Listing 11.18 e-boats/WEB-INF/tiles/main-layout.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE><tiles:getAsString name="title"/></TITLE>
<LINK REL="STYLESHEET"
 HREF="<html:rewrite page='/css/styles.css'/>"
 TYPE="text/css">
</HEAD>
<BODY>
<tiles:insert attribute="header"/>
<P>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE"><tiles:getAsString name="title"/>
</TH></TR></TABLE>

Chapter 11 ■ The Struts Framework: Doing More572

Step 3: Create JSP Pages That
Define the Layout Pieces

Next, we create the individual layout pieces (JSP fragments) for each of the
stubbed-out sections in the layout template. Listings 11.19 through 11.21 present the
layout pieces for the header, search menu, and footer sections, respectively. We place
all of these pages in the WEB-INF/tiles directory. So that included URLs are correct in
the rendered pages, we use the html:rewrite tag throughout the layout pieces. In
this manner, we don’t have to hard-code the Web application name, e-boats, in the
URL links.

In Listings 11.22 through 11.25, we present the JSP fragments for each of the four
body sections in the site. The body-index.jsp section contains the opening body con-
tent for the site. The other three body sections, body-yachts.jsp, body-tankers.jsp,
and body-carriers.jsp, are for the three various boats types available for purchase. As
with the other JSP pieces, we place these body sections in the WEB-INF/tiles

directory.

<P>
<TABLE WIDTH=75 ALIGN="LEFT" CELLSPACING="5">
<TR><TD><tiles:insert attribute="search-menu"/></TD></TR>
</TABLE>
<tiles:insert attribute="body"/>
<BR CLEAR="ALL">
<HR>
<tiles:insert attribute="footer"/>
</BODY></HTML>

Listing 11.19 e-boats/WEB-INF/tiles/header.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<TABLE WIDTH="100%" CLASS="DARK">
 <TR>
 <TH ALIGN="LEFT">
 <A HREF="<html:rewrite page='/index.html'/>"
 CLASS="WHITE">
 Home
 <A HREF="<html:rewrite page='/products.html'/>"
 CLASS="WHITE">
 Products

Listing 11.18 e-boats/WEB-INF/tiles/main-layout.jsp (continued)

11.3 Laying Out Pages with Tiles 573

 <A HREF="<html:rewrite page='/services.html'/>"
 CLASS="WHITE">
 Services
 <A HREF="<html:rewrite page='/contact.html'/>"
 CLASS="WHITE">
 Contact Us
 </TH>
 <TH ALIGN="RIGHT">
 <A HREF="<html:rewrite action='/actions/showCart'/>"
 CLASS="WHITE">
 My Cart
 <A HREF="<html:rewrite action='/actions/logout'/>"
 CLASS="WHITE">
 Logout
 <A HREF="<html:rewrite page='/help.html'/>"
 CLASS="WHITE">
 Help
 </TH>
 </TR>
</TABLE>

Listing 11.20 e-boats/WEB-INF/tiles/search-menu.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<CENTER>
<TABLE BORDER=1>
 <TR BGCOLOR="BLACK"><TH>
 Search Site
 </TH></TR>
 <TR><TH>
 <FORM ACTION=
 "<html:rewrite action='/actions/siteSearch'/>">
 <INPUT TYPE="TEXT" NAME="query">

 <INPUT TYPE="SUBMIT" VALUE="Search">
 </FORM>
 </TH></TR>
</TABLE>
<P>
<TABLE BORDER=1>
 <TR BGCOLOR="BLACK">
 <TH>Search Web</TH>
 </TR>

Listing 11.19 e-boats/WEB-INF/tiles/header.jsp (continued)

Chapter 11 ■ The Struts Framework: Doing More574

 <TR><TH>
 <FORM ACTION="http://google.com/search">
 <INPUT TYPE="HIDDEN" NAME="hl" VALUE="en">
 <INPUT TYPE="TEXT" NAME="q">

 <INPUT TYPE="SUBMIT" VALUE="Search">
 </FORM>
 </TH></TR>
</TABLE>
</CENTER>

Listing 11.21 e-boats/WEB-INF/tiles/footer.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<CENTER>
<A HREF="<html:rewrite page='/index.html'/>">Home
<A HREF="<html:rewrite page='/contact.html'/>">Contact
<A HREF="<html:rewrite page='/privacy.html'/>">Privacy
</CENTER

Listing 11.22 e-boats/WEB-INF/tiles/body-index.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<P>
Looking for a hole in the water into which to pour your money?
You've come to the right place! We offer a wide selection of
reasonably priced boats for everyday use.
<IMG SRC="<html:rewrite page='/images/yacht.jpg'/>"
 WIDTH=240 HEIGHT=367
 ALIGN="RIGHT" ALT="Base-model yacht">

<H2>Yachts</H2>
Starting at a mere 72 million, these entry-level models are
perfect for the cost-conscious buyer.
Click <A HREF="<html:rewrite page='/yachts.jsp'/>">
here for details.

Listing 11.20 e-boats/WEB-INF/tiles/search-menu.jsp (continued)

11.3 Laying Out Pages with Tiles 575

<H2>Oil Tankers</H2>
Looking for something a bit bigger and sturdier? These
roomy models come complete with large swimming pools.
Click <A HREF="<html:rewrite page='/tankers.jsp'/>">
here for details.

<H2>Aircraft Carriers</H2>
Concerned about security? These high-tech models come
equipped with the latest anti-theft devices.
Click <A HREF="<html:rewrite page='/carriers.jsp'/>">
here for details.

Listing 11.23 e-boats/WEB-INF/tiles/body-yachts.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
Luxurious models for the <S>wasteful</S>
wealthy buyer.
<H2>Available Models</H2>
Choose a model to see a picture along with price and
availability information.
<FORM ACTION="<html:rewrite action='/actions/displayItem'/>">
<INPUT TYPE="RADIO" NAME="itemNum" VALUE="BM1">
Base Model -- Includes 4-car garage

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="MR1">
Mid Range -- Has 15 bedrooms and a helipad

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="HE1">
High End -- Free tropical island nation included
<P>
<CENTER>
<INPUT TYPE="SUBMIT" VALUE="Get Details">
</CENTER>
</FORM>
<CENTER>
<IMG SRC="<html:rewrite page='/images/yacht.jpg'/>"
 ALT="Yacht"></CENTER>

Listing 11.22 e-boats/WEB-INF/tiles/body-index.jsp (continued)

Chapter 11 ■ The Struts Framework: Doing More576

Listing 11.24 e-boats/WEB-INF/tiles/body-tankers.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
Stable and roomy models for the <S>uninformed</S>
innovative buyer.
<H2>Available Models</H2>
Choose a model to see a picture along with price and
availability information.
<FORM ACTION="<html:rewrite action='/actions/displayItem'/>">
<INPUT TYPE="RADIO" NAME="itemNum" VALUE="Valdez">
Valdez -- Slightly damaged model available at discount

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="BigBertha">
Big Bertha -- Includes 10 million gallon swimming pool

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="EcoDisaster">
ED I -- For those who don't mind political incorrectness
<P>
<CENTER>
<INPUT TYPE="SUBMIT" VALUE="Get Details">
</CENTER>
</FORM>
<CENTER>
<IMG SRC="<html:rewrite page='/images/tanker.jpg'/>"
 ALT="Tanker"></CENTER>

Listing 11.25 e-boats/WEB-INF/tiles/body-carriers.jsp

<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
High-security models for the <S>paranoid</S> careful buyer.
<H2>Available Models</H2>
Choose a model to see a picture along with price and
availability information.
<FORM ACTION="<html:rewrite action='/actions/displayItem'/>">
<INPUT TYPE="RADIO" NAME="itemNum" VALUE="SafeT-1A">
SafeT-1A -- Our Most Popular Model

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="SafeT-1B">
SafeT-1B -- 1000-man crew included

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="Lubber-1">
Land Lubber I -- Land-based replica; no water to worry about!
<P>
<CENTER>
<INPUT TYPE="SUBMIT" VALUE="Get Details">
</CENTER>
</FORM>
<CENTER>
<IMG SRC="<html:rewrite page='/images/carrier.jpg'/>"
 ALT="Carrier"></CENTER>

11.3 Laying Out Pages with Tiles 577

Step 4: Create JSP Pages That Populate the Layout
Now, we create the main pages for the site. As we are using Tiles, these main pages
rely on the layout template file created in Step 2. After using the tiles:insert tag
to specify which layout template file to use, each page then uses the tiles:put tag
to specify which file fragments from Step 3 to use for the stubbed-out sections in the
template.

Listings 11.26 through 11.29 present the four main pages for our e-boats applica-
tion, index. jsp, yachts . jsp, tankers. jsp, and carriers . jsp, respectively. The
tiles:put elements for the header, search menu, and footer sections are the same
for all four pages. The main differences between these pages are the values for the
title and body sections.

As these are the main pages for the site and accessible by the user, we place these
files in the default (root) directory for the site, e-boats, and not in the WEB-INF subdi-
rectory (as with the template file and layout pieces).

The complete file structure of the e-boats application is shown in Figure 11–9.

Listing 11.26 e-boats/index.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/main-layout.jsp">

<tiles:put name="title" value="Welcome to e-boats.com!"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="search-menu"

value="/WEB-INF/tiles/search-menu.jsp"/>
<tiles:put name="body" value="/WEB-INF/tiles/body-index.jsp"/>

 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Listing 11.27 e-boats/yachts.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/main-layout.jsp">

<tiles:put name="title" value="E-boats.com Yachts!"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="search-menu"

value="/WEB-INF/tiles/search-menu.jsp"/>
<tiles:put name="body" value="/WEB-INF/tiles/body-yachts.jsp"/>

 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Chapter 11 ■ The Struts Framework: Doing More578

Listing 11.28 e-boats/tankers.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/main-layout.jsp">

<tiles:put name="title" value="E-boats.com Oil Tankers!"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="search-menu"

value="/WEB-INF/tiles/search-menu.jsp"/>
<tiles:put name="body" value="/WEB-INF/tiles/body-tankers.jsp"/>

 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Listing 11.29 e-boats/carriers.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert page="/WEB-INF/tiles/main-layout.jsp">

<tiles:put name="title" value="E-boats.com Aircraft Carriers!"/>
 <tiles:put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <tiles:put name="search-menu"

value="/WEB-INF/tiles/search-menu.jsp"/>
<tiles:put name="body" value="/WEB-INF/tiles/body-carriers.jsp"/

>
 <tiles:put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</tiles:insert>

Figure 11–9 Complete file structure of e-boats
application.

11.3 Laying Out Pages with Tiles 579

Results
Figures 11–10 though 11–13 present the results for our e-boats application. Figure
11–10 is the opening page for the site, index.jsp (Listing 11.26). Figures 11–11
through 11–13 are the results for the yachts.jsp (Listing 11.27), tankers.jsp (Listing
11.28), and carriers.jsp (Listing 11.29) pages, respectively. All four pages use the
same template file, WEB-INF/titles/main-layout.jsp (Listing 11.18) to achieve a similar
layout.

Figure 11–10 Result of e-boats/index.jsp.

Chapter 11 ■ The Struts Framework: Doing More580

Figure 11–11 Result of e-boats/yachts.jsp.

11.3 Laying Out Pages with Tiles 581

Figure 11–12 Result of e-boats/tankers.jsp.

Chapter 11 ■ The Struts Framework: Doing More582

11.4 Using Tiles Definitions

Earlier we showed you how to use Tiles to design a Web site that has a common look
and feel. Basically, with this approach, you first created a layout template file with
stubbed-out sections, created JSP fragments for each stubbed section, and then cre-
ated pages main that defined which fragments to substitute for the stubs.

With Tiles Definitions you can design your Web site with a slightly different
approach. Initially, you create a definition file, WEB-INF/tiles-def.xml, that defines a
top-level layout. The top-level layout can reference a template file and provide infor-
mation about the stubbed-out sections in the template. In the same definition file,

Figure 11–13 Result of e-boats/carriers.jsp.

11.4 Using Tiles Definitions 583

you create additional layouts derived from the top-level layout. These derived layouts
can substitute new content for sections in the top-level layout. To create the final
pages of the Web site, you simply refer to the derived layouts in WEB-INF/

tiles-def.xml.
You can think of Tiles Definitions as a loose form of inheritance. First you create a

top-level layout for the overall design of your pages, and then you create derived lay-
outs that override sections of the top-level layout.

Tiles Definitions Motivations
You don’t have to use Tiles Definitions for your Web site. You could design your site
using the initial Tiles approach presented in Section 11.3 (Laying Out Pages with
Tiles). However, in the following list, we summarize the main reasons why you may
want to use Tiles Definitions instead.

• Avoiding repetition. In the previous example (e-boats application),
each final JSP page repeated the definition of all the elements. Even
though only the title and body changed, each final JSP page still had to
do tiles:put for the header, search menu, and footer. With Tiles
Definitions, you don’t have to repeat common elements.

• Centralized changes. The locations of the various layout pieces (JSP
fragments) are scattered around multiple JSP pages, so if locations
change, multiple files need to be edited. With Tiles Definitions, you
have fewer layout pieces scattered throughout your site and less
editing.

• Usage of config files. Struts philosophy is to put as much as possible
in config files and as little as possible in JSP and Java code. Tiles
Definitions permits you to define most of your layout in a single file.

The Five Basic Steps in Using Tiles Definitions
Next, we outline the five basic steps in using Tiles Definitions. The first three steps
are the same as for basic Tiles. The last two steps are new.

1. Sketch out the desired layout. As with the previous Tiles approach,
we recommend that you sketch the basic page layout for your site on a
piece of paper.

2. Make a template file that represents the layout. Use
tiles:insert wherever a layout piece (JSP fragment) should go.
Also, use tiles:getAsString wherever changeable text goes. Both
these tiles: tags act as stubs that are later filled in by other pieces.

Chapter 11 ■ The Struts Framework: Doing More584

3. Create JSP pages that define the layout pieces. Create JSP pages
that contain HTML fragments for the stubbed-out layout.

4. Define layouts in WEB-INF/tiles-defs.xml. In the definition file,
define a top-level layout and any derived layouts.

5. Create JSP pages that use the layouts. Create the main pages for
the site. These JSP pages typically have nothing more than a line to
import the Tiles tag library and a line with tiles:insert to specify
which layout definition in tiles-defs.xml to use.

Details follow.

Step 1: Sketch Out the Desired Layout
This step is the same as with basic Tiles (see Section 11.3).

Step 2: Make a Template File That Represents the Layout
Again, this step is the same as with basic Tiles (see Section 11.3).

Step 3: Create JSP Pages That Define the Layout Pieces
Also, this step is the same as with basic Tiles (see Section 11.3).

Step 4: Define Layouts in WEB-INF/tiles-defs.xml
For Tiles Definitions, you need to define a top-level layout and derived layouts in
WEB-INF/tiles-defs.xml. In general, the format for tiles-def.xml is the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration 1.3//EN"
"http://jakarta.apache.org/struts/dtds/tiles-config_1_3.dtd">

<tiles-definitions>
<definition name=".mainLayout"

 path="/WEB-INF/tiles/main-layout.jsp">
 ...
 </definition>
 <definition name="somePage" extends=".mainLayout">
 ...
 </definition>
 <definition name="anotherPage" extends=".mainLayout">
 ...
 </definition>
 ...
</tiles-definitions>

11.4 Using Tiles Definitions 585

Typically, the first definition is the main layout of your pages and references a
template file. The remaining definitions are derived from the main layout.

Note that the struts-blank-1.3.5 application does contain a tiles-def.xml file. If
needed, as a starting point, you can download a blank tiles-def.xml file from the
book’s source code archive at http://volume2.coreservlets.com/.

Top-Level Layouts
Initially, in tiles-def.xml, define the top-level layout for your site in a definition
element. Each definition element must provide a name attribute to uniquely
identify the layout. Use the path attribute to specify the top-level template file for
your site. A representative example is shown here:

<definition name="top-level-layout-name"
 path="/WEB-INF/.../some-layout.jsp">
 <put name="title"
 value="Some Page Title" />

<put name="menu"
 value="/WEB-INF/.../some-menu.jsp" />
 <put name="body"
 value="/WEB-INF/.../some-body.jsp" />
 ...
</definition>

Within the definition element, use the put element to specify any initial
pages to populate the parent layout. With this initial top-level definition, you can eas-
ily set up common elements (titles, headers, footers, etc.) for all your pages. You
need only specify these common elements once in the first definition. Then, in
derived definitions you can clarify additional changes to the main layout.

Derived Layouts
After creating your top-level layouts in WEB-INF/tiles-def.xml, provide any derived
layouts that you also need for your site. These derived layouts specify only the
changes from the parent layout. The structure of the parent layout is automatically
inherited by the derived layout.

To create a derived layout, use the definition element with a name attribute to
uniquely identify the layout. However, add an extends attribute to clarify from
which parent layout to build the new one. Within the definition element, provide
put elements to override any definitions in the parent layout. A representative exam-
ple follows:

<definition name="derived-layout-name"
 extends="top-level-layout-name">
 <put name="title"
 value="Another Page Title" />
</definition>

http://volume2.coreservlets.com/

Chapter 11 ■ The Struts Framework: Doing More586

In this example, if the parent layout provides a definition for the title, then the
derived layout would override the parent title and provide a new value. All other
defined stubs in the parent layout would convey to the derived layout.

Step 5: Create JSP Pages That Use the Layouts
The last step is to create the main Web pages accessed by the user. These pages spec-
ify which layout to use from WEB-INF/tiles-defs.xml. Typically, these pages have only
two lines in them, as described next.

• Declare the Struts tiles tag library. To use the tiles: tags,
declare the tag library.

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>

• Use tiles:insert to refer to the definition layout. With the
tiles:insert tag, use the definition attribute to specify which
derived layout to use from WEB-INF/tiles-defs.xml. The following is an
example:

<tiles:insert definition="some-layout-name" />

Example: e-boats Application
with Tiles Definitions

Next, we rework the e-boats example from Section 11.3 (Laying Out Pages with
Tiles), but use Tiles Definitions instead. The following is our new design approach.

• Use the same look for the Web site and keep the JSP page names the
same. Also, uses the same template file to represent the general layout
of pages and keep the same layout pieces (JSP fragments) for the
header, menu, footer, and so on.

• Use WEB-INF/tiles-def.xml to specify the parent layout and derived
layouts.

• In the final JSP pages, use the tiles:insert tag to refer to a
derived layout in WEB-INF/tiles-def.xml.

Now, for this example, we cover the five basic steps in using Tiles Definitions.

Step 1: Sketch Out the Desired Layout
The general layout is the same as the previous e-boats application in Section 11.3
(Laying Out Pages with Tiles). For convenience, the layout is shown again in Figure
11–14.

11.4 Using Tiles Definitions 587

Step 2: Make a Template File
That Represents the Layout

The template file, WEB-INF/tiles/main-layout.jsp, is the same as the previous e-boats
application in Section 11.3 (Laying Out Pages with Tiles). See Listing 11.18.

Step 3: Create JSP Pages That
Define the Layout Pieces

The layout pieces (JSP fragments) are no different from previous example. See List-
ings 11.19 through 11.25, for the following layout pieces, respectively.

• WEB-INF/tiles/header.jsp

• WEB-INF/tiles/search-menu.jsp

• WEB-INF/tiles/footer.jsp

• WEB-INF/tiles/body-index.jsp

• WEB-INF/tiles/body-yachts.jsp

• WEB-INF/tiles/body-tankers.jsp

• WEB-INF/tiles/body-carriers.jsp

Figure 11–14 Sketch of a typical page for e-boats2 application. Annotations indicate the
various Tiles sections.

Header

Title

Search Menu

Footer

Body

Chapter 11 ■ The Struts Framework: Doing More588

Step 4: Define Layouts in WEB-INF/tiles-defs.xml
In WEB-INF/tiles-defs.xml, we first specify the top-level layout definition, .main-
Layout, as given here:

<definition name=".mainLayout"
 path="/WEB-INF/tiles/main-layout.jsp">
 <put name="title" value=""/>
 <put name="header" value="/WEB-INF/tiles/header.jsp"/>
 <put name="search-menu"
 value="/WEB-INF/tiles/search-menu.jsp"/>
 <put name="body" value=""/>
 <put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
</definition>

This definition states that the template file, main-layout.jsp, is the main layout
page for the site. For each stub in main-layout.jsp, we use the put element to specify
each layout piece for the corresponding tiles:insert or tiles:getAsString.
Initially, the title and body stubs have no value; inherited layouts will provide values
for these stubs.

Next, we specify derived layout definitions in WEB-INF/tiles-defs.xml for each of
the four pages in the e-boats2 application. Each derived layout extends the .main-
Layout and provides a replacement definition for the title and body stubs. The
index.page layout is shown here:

<definition name="index.page" extends=".mainLayout">
 <put name="title" value="Welcome to e-boats.com!"/>
 <put name="body" value="/WEB-INF/tiles/body-index.jsp"/>
</definition>

For the remaining derived layouts, see the complete WEB-INF/tiles-defs.xml in
Listing 11.30.

Listing 11.30 e-boats2/WEB-INF/tiles-defs.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration 1.3//EN"
 "http://jakarta.apache.org/struts/dtds/tiles-config_1_3.dtd">
<tiles-definitions>
 <definition name=".mainLayout"
 path="/WEB-INF/tiles/main-layout.jsp">
 <put name="title" value=""/>
 <put name="header" value="/WEB-INF/tiles/header.jsp"/>

11.4 Using Tiles Definitions 589

Step 5: Create JSP Pages That Use the Layouts
The last step is to create the main JSP pages that use the layouts. These files simply
use the tiles:insert tag to apply the appropriate layout definition, from
WEB-INF/tiles-defs.xml, when rendering the page.

Listings 11.31 through 11.34 show the four main pages for our e-boats2 applica-
tion, index.jsp, yachts.jsp, tankers.jsp, and carriers.jsp, respectively. Again, as these
are the main pages for the site and accessible by the user, we place these files in the
default (root) directory of the site.

 <put name="search-menu"
value="/WEB-INF/tiles/search-menu.jsp"/>

 <put name="body" value=""/>
 <put name="footer" value="/WEB-INF/tiles/footer.jsp"/>
 </definition>
 <definition name="index.page" extends=".mainLayout">
 <put name="title" value="Welcome to e-boats.com!"/>
 <put name="body" value="/WEB-INF/tiles/body-index.jsp"/>
 </definition>
 <definition name="yachts.page" extends=".mainLayout">
 <put name="title" value="E-boats.com Yachts!"/>
 <put name="body" value="/WEB-INF/tiles/body-yachts.jsp"/>
 </definition>
 <definition name="tankers.page" extends=".mainLayout">
 <put name="title" value="E-boats.com Oil Tankers!"/>
 <put name="body" value="/WEB-INF/tiles/body-tankers.jsp"/>
 </definition>
 <definition name="carriers.page" extends=".mainLayout">
 <put name="title" value="E-boats.com Aircraft Carriers!"/>
 <put name="body" value="/WEB-INF/tiles/body-carriers.jsp"/>
 </definition>
</tiles-definitions>

Listing 11.31 e-boats2/index.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert definition="index.page"/>

Listing 11.30 e-boats2/WEB-INF/tiles-defs.xml (continued)

Chapter 11 ■ The Struts Framework: Doing More590

Results
The results for our reworked e-boats application are the same as before. See Figures
11–10 though 11–13 in Section 11.3 (Laying Out Pages with Tiles), for the represen-
tative output pages.

Listing 11.32 e-boats2/yachts.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert definition="yachts.page"/>

Listing 11.33 e-boats2/tankers.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert definition="tankers.page"/>

Listing 11.34 e-boats2/carriers.jsp

<%@ taglib uri="http://struts.apache.org/tags-tiles"
 prefix="tiles" %>
<tiles:insert definition="carriers.page"/>

This page intentionally left blank

THE STRUTS
FRAMEWORK:
VALIDATING
USER INPUT

Topics in This Chapter

• Manually validating input fields in an Action or
ActionForm

• Returning to the input page when errors occur

• Displaying messages with the html:messages tag

• Using rules in validation.xml to check input fields

• Adding client-side JavaScript validation

593

ChapterChapter 12

Probably the most tedious and time-consuming part of developing a Web site is vali-
dation of the input data. There is no easy way of getting around it—you have to check
for missing or poorly formatted input values. Unfortunately, the servlet and JSP APIs
provide no mechanism for easily validating input data!

To the rescue come the Struts Validation framework. The framework is incredibly
flexible and easy to use, supporting both server-side and client-side validation.

For validating form fields, Struts gives you the following options:

• Do validation in the Action. This is the most powerful and flexible
approach. Validation in the Action has access to business logic,
databases, and so on. However, this validation approach may require
repetition of code in multiple Actions and requires you to write the
validation rules yourself. Also, you need to manually map conditions
back to the input page.

• Do validation in the form bean. You can do validation in individual
setter methods—not really validation, but useful to modify values.
Better, you can use the validate method in ActionForm. This
approach does not require repetition of code in multiple Actions,
but still requires you to write validation rules. Based on the return
value from validate, Struts can automatically redisplay the input
page.

Chapter 12 ■ The Struts Framework: Validating User Input594

• Use automatic validator. Automatic validation is the most powerful
approach. The Struts Validation framework includes many rules for
automatically checking input values (missing data, phone number
format, e-mail format, etc.). In addition, the automatic validator can
incorporate client-side JavaScript for field validation.

12.1 Validating in the Action Class

In this section, we cover manual validation of input fields in the Action class. Did
we say manual validation? As you’ll discover, manual validation of data gives you the
most power, the greatest flexibility, and complete control of your validation code.
However, you have to write the code. Yuck!

Later in this chapter, we cover other approaches that take advantage of the valida-
tion techniques automatically built into the Struts framework.

For simple input validation—missing data, wrong format—using the Struts frame-
work is a great time saver. However, if you have to do more complicated validation,
like checking values against a database, then you have to write code. Thus, we first
show you how to perform manual validation of input fields in the Action class.

Struts Flow of Control
Figure 12–1 illustrates the Struts flow of control, with updates for manual validation
of input data in the Action class.

As presented in Chapter 10 (The Struts Framework: Basics), when the user sub-
mits an input page to the server, the Struts system populates the form bean with the
input data and then passes the bean to the execute method of the Action class.
Here, the execute method can apply business logic to manually validate the input
data, and depending on the result, return a condition to forward the request back to
the input page or to a results page.

12.1
V

alidating in the A
ction C

lass
5

9
5

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean and pass
to execute method.

Use html:form to build the
form. Use html:messages
to display error messages.

forward to

Figure 12–1 Flow of the request through the Struts framework with manual validation of the input fields in the Action. If there are
errors with the input data, the Action can return a condition to forward the request back to the input page.

Chapter 12 ■ The Struts Framework: Validating User Input596

Performing Validation in the Action
When performing manual validation of the input fields in an Action, we recom-
mend the following approach.

• Access input fields from bean. Proceed as normal by casting the
ActionForm bean (second argument to execute method) to the
specific class type. Then, call the appropriate getter methods to
retrieve the field values.

• Add error messages to ActionMessages and place in the
request scope. For each missing or incorrect value add an error
message to ActionMessages. Place the ActionMessages in the
request scope for access by the input page.

• Return error code and map error code to input form. Use
mapping.findForward to return an error code that maps back to
the input form. In struts-config.xml, define a forward element that
maps the error code back to the input form.

• Use html:messages to output error messages in input form.
On the input JSP page, use the html:messages tag to display any
error messages.

Details follow.

Access Input Fields from Bean
As presented in Chapter 10 (The Struts Framework: Basics), access the Action-
Form bean from the second argument of the ActionForm’s execute method.
Remember to cast the bean to the specific class type. Then, call the appropriate get-
ter methods to retrieve the field values.

Add Error Messages to ActionMessages
and Place in the request Scope

For each missing or incorrect input field, add an error message to Action-
Messages. To accomplish this step, first create an ActionMessages object in the
execute method of Action. Then, check each input field (property) of the form
bean. If an error is identified, create an error message and add it to the Action-
Messages object. An example is shown here:

ActionMessages messages = new ActionMessages();
String value = someFormBean.getItem();
if ((value==null) || (value.trim().equals("")) {
 String warning = "Item missing value"
 messages.add("item", new ActionMessage(warning, false));
}
...

12.1 Validating in the Action Class 597

When creating the ActionMessage, provide a literal string for the error or
warning message in the first argument of the constructor and specify a value of
false for the second argument. The false value indicates that the message is a lit-
eral and not a key referencing a message in a properties files. Later in Section 12.2
(Validating in the Form Bean), we cover accessing messages from properties files.

Finally, place the ActionMessages in the request scope for access by the
input page, as shown here:

if (!messages.isEmpty()) {
addMessages(request, messages);

}

Return Error Code and Map Error
Code to Input Form

As presented in Chapter 10 (The Struts Framework: Basics), use mapping.find-
Forward to return an error code that maps back to the input form.

Use html:messages to Output
Error Messages in the Input Form

Use html:messages on the input page to list errors found with the input fields.
This tag checks the request scope for an ActionMessages (or ActionErrors)
object. If messages are present, use bean:write to display each message. An exam-
ple of the html:messages tag is given here:

<html:messages id="msg" message="true">
 <bean:write name="msg"/>
</html:messages>

Specifically, the id attribute is required and identifies which variable to place in
each message as the html:messages tag iterates over a collection of messages. The
tag places the individual messages in page scope. Then, by using bean:write, you
can access and display each message.

The message attribute indicates whether the collection of messages is stored in
an ActionMessages object (true) or ActionErrors object (false). We cover
ActionErrors in Section 12.2 (Validating in the Form Bean). If there are no mes-
sages to display, the html:messages tag produces no output.

Table 12.1 summarizes the common attributes of the html:messages tag. For
a complete listing of attributes, see http://struts.apache.org/1.x/struts-taglib/
tagreference.html#messages.

http://struts.apache.org/1.x/struts-taglib/tagreference.html#messages
http://struts.apache.org/1.x/struts-taglib/tagreference.html#messages

Chapter 12 ■ The Struts Framework: Validating User Input598

Instead of listing all the messages, you can target only those messages for a partic-
ular input field. To achieve this result, use <html:messages property="name"
.../>, where the "name" matches the one given to the ActionMessage when it
was added to ActionMessages (or ActionErrors).

For instance, suppose that you used the following names when adding messages
to ActionMessages:

messsages.add("someName", new ActionMessage("message1", false));
messsages.add("someOtherName",

new ActionMessage("message2", false));
messsages.add("someName", new ActionMessage("message3", false));

Then, on the input page, you could display only someName messages with this:

<html:messages id="msg" message="true"
 property="someName">
 <bean:write name="msg"/>
</html:messages>

Next, we present a simple example that illustrates manual validation of input data
in the Action class.

Table 12.1 Common Attributes of the html:messages Tag

Attribute Description

id The name of the bean in which to store each message. The tag places
the bean in page scope.

message Indicates if the messages are stored in an ActionMessages object
(true) or an ActionErrors object (false).

property Specifies which messages to display. The value would have to match the
name of the ActionMessage when added to ActionMessages or
ActionErrors. If not specified, the default behavior is to display all
messages.

header To display text before all messages, use the header attribute to
specify the key of the text message in the properties file. See
Section 12.2 for properties files.

footer To display text after all the messages, use the footer attribute to
specify the key of the text message in the properties file. See
Section 12.2 for properties files.

12.1 Validating in the Action Class 599

Example: Choosing Colors
and Font Sizes for Resume

In this example, we produce a sample online resume. The user, through an input
page, can specify the fonts and colors to use when generating the resume. If the user
doesn’t complete all the fields, or makes some poor choices for values (same back-
ground color and foreground color), the application returns the user to the input
page, displaying any relevant error messages.

We outline our design strategy for this example here.

• Use the input form to collect font sizes and colors. The user can
specify font sizes for the resume title, heading, and body. The user can
also specify a resume foreground color and background color.

• Use html:messages to print out error messages on the input page.
• Use ActionForm for input data. The ActionForm bean performs

no error checking, as validation is done in the Action. When the user
submits the request, Struts populates the bean with the input data
before handing it to the Action.

• Use Action to manually validate the input fields. The execute
method checks if any parameters are missing (font sizes, colors). If so,
the execute method adds warning messages to ActionMessages
and returns an error code to map back to the input page.

• Use struts-config.xml to map an error code back to the input form.

Listing 12.1 presents our input form, form1.jsp. The user has the choice of five
input fields to create the perfect resume: title size, heading size, body size, fore-
ground color, and background color. This form uses html:form and html:text
tags from the Struts HTML tag library to build the form elements.

Before the html:form tag, we use the html:messages tag to display any error
messages stored in the request scope. If no ActionMessages are found in the
request scope (as would be the case on the first request of the page), then the tag
yields no output.

Listing 12.2 gives our form bean, FormatFormBean. Aside from setter and getter
methods for the bean properties, the bean has an isMissing method to check for
missing values.

Our Action class, ShowSampleAction, is given in Listing 12.3. After retrieving
the form bean, the execute method checks each input field (bean property) for poten-
tial problems. If a problem with a field is found, an ActionMessage is added to the
collection of ActionMessages and the forward condition is set to "missing-data".
After checking all the fields, the execute method places the ActionMessages in
the request scope and returns a forward condition.

Chapter 12 ■ The Struts Framework: Validating User Input600

Listing 12.4 presents struts-config.xml for this example. The action element
defines two forwards, one for a "success" condition and one for a "missing-data"
condition. The forward elements are given here:

<forward name="success"
 path="/WEB-INF/results/resume.jsp"/>
<forward name="missing-data"
 path="/forms/form1.jsp"/>

For a "missing-data" condition, Struts returns the user back to the input page,
form1.jsp; otherwise, for a "success" condition, the user is sent to the resume for
review, resume.jsp.

Finally, Listing 12.5 presents the output page for the sample resume. Basically,
the page uses a stylesheet based on the user input to control the font sizes, back-
ground color, and foreground color. The bean:write tag,

<bean:write name="formatFormBean"
 property="styleSheet" filter="false"/>

retrieves the stylesheet information from the bean.

Listing 12.1 chooseFormat1/forms/form1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Choose Format</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Choose Format</H1>
Please select the font sizes and colors that you would
like used to display your resume.
<P>
<CENTER>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>

<html:messages id="msg" message="true">

 <bean:write name="msg"/>

</html:messages>

12.1 Validating in the Action Class 601

<html:form action="/actions/showSample">
 Title size: <html:text property="titleSize"/>

 Heading size: <html:text property="headingSize"/>

 Body text size: <html:text property="bodySize"/>

 Background color: <html:text property="bgColor"/>

 Foreground color: <html:text property="fgColor"/>

 <html:submit value="Show Sample"/>
</html:form>
</CENTER>
</BODY></HTML>

Listing 12.2
chooseFormat1/WEB-INF/classes/coreservlets/
FormatFormBean.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Bean with fields for formatting resume. Other than
 * isMissing method, the bean provides no error checking
 * of the input fields.
 */

public class FormatFormBean extends ActionForm {
 private String titleSize = "";
 private String headingSize = "";
 private String bodySize = "";
 private String bgColor = "";
 private String fgColor = "";

 public String getTitleSize() {
 return(titleSize);
 }

 public void setTitleSize(String titleSize) {
 this.titleSize = titleSize;
 }

 public String getHeadingSize() {
 return(headingSize);
 }

Listing 12.1 chooseFormat1/forms/form1.jsp (continued)

Chapter 12 ■ The Struts Framework: Validating User Input602

 public void setHeadingSize(String headingSize) {
 this.headingSize = headingSize;
 }

 public String getBodySize() {
 return(bodySize);
 }

 public void setBodySize(String bodySize) {
 this.bodySize = bodySize;
 }

 public String getBgColor() {
 return(bgColor);
 }

 public void setBgColor(String bgColor) {
 this.bgColor = bgColor;
 }

 public String getFgColor() {
 return(fgColor);
 }

 public void setFgColor(String fgColor) {
 this.fgColor = fgColor;
 }

 public String getStyleSheet() {
 return(
 "<STYLE TYPE=\"text/css\">\n" +
 "<!--\n" +
 "H1 { font-size: " + titleSize + "px; }\n" +
 "H2 { font-size: " + headingSize + "px; }\n" +
 "BODY { font-size: " + bodySize + "px;\n" +
 " background-color: " + bgColor + ";\n" +
 " color: " + fgColor + "; }\n" +
 "-->\n" +
 "</STYLE>");
 }

 public boolean isMissing(String value) {
 return((value == null) || (value.trim().equals("")));
 }
}

Listing 12.2
chooseFormat1/WEB-INF/classes/coreservlets/
FormatFormBean.java (continued)

12.1 Validating in the Action Class 603

Listing 12.3
chooseFormat1/WEB-INF/classes/coreservlets/
ShowSampleAction.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Action that performs manual validation of the form bean
 * properties. If a problem exists with the user provided data,
 * then the Action creates warning messages and place them in
 * request scope.
 */

public class ShowSampleAction extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 FormatFormBean formatBean = (FormatFormBean)form;
 ActionForward forward = mapping.findForward("success");
 ActionMessages messages = new ActionMessages();

 if (formatBean.isMissing(formatBean.getTitleSize())) {
 addMessage(messages, "title", "Missing Title Size");
 forward = mapping.findForward("missing-data");
 }
 if (formatBean.isMissing(formatBean.getHeadingSize())) {
 addMessage(messages, "headings", "Missing Heading Size");
 forward = mapping.findForward("missing-data");
 }
 if (formatBean.isMissing(formatBean.getBodySize())) {
 addMessage(messages, "body", "Missing Body Size");
 forward = mapping.findForward("missing-data");
 }
 if (formatBean.isMissing(formatBean.getBgColor())) {
 addMessage(messages, "bg", "Missing Background Color");
 forward = mapping.findForward("missing-data");
 }
 if (formatBean.isMissing(formatBean.getFgColor())) {
 addMessage(messages, "fg", "Missing Foreground Color");
 forward = mapping.findForward("missing-data");
 } else if (formatBean.getFgColor().equals
 (formatBean.getBgColor())) {

Chapter 12 ■ The Struts Framework: Validating User Input604

 addMessage(messages, "fg",
 "Foreground and Background Identical!");
 forward = mapping.findForward("missing-data");
 }
 if (!messages.isEmpty()) {
 addMessages(request, messages);
 }
 return(forward);
 }

 protected void addMessage(ActionMessages messages,
 String property,
 String warning) {
 messages.add(property, new ActionMessage(warning, false));
 }
}

Listing 12.4 chooseFormat1/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//
EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="formatFormBean"
 type="coreservlets.FormatFormBean"/>
 </form-beans>
 <action-mappings>
 <action path="/actions/showSample"
 type="coreservlets.ShowSampleAction"
 name="formatFormBean"
 scope="request">
 <forward name="success"
 path="/WEB-INF/results/resume.jsp"/>
 <forward name="missing-data"
 path="/forms/form1.jsp"/>
 </action>

...
 </action-mappings>
</struts-config>

Listing 12.3
chooseFormat1/WEB-INF/classes/coreservlets/
ShowSampleAction.java (continued)

12.1 Validating in the Action Class 605

Results
Figure 12–2 shows the input page containing the five fields to control the look of the
sample resume. If the user submits the page without completing all the fields, the
user is returned to the input page as shown Figure 12–3.

For the result shown, because the user did not provide a title size and foreground
color, ShowSampleAction added two error messages to the ActionMessages
and returned a "missing-data" condition, sending the request back to the input
page. As seen, the html:messages tag displays the error messages above the input
fields. Also, observe that the previously submitted values are redisplayed in their
respective input fields (a benefit of using the Struts html: tags).

Note that the RequestDispatcher handles the forwarding of the request
back to the input page. Thus, the browser address remains the submitted ACTION
URL, /chooseFormat1/actions/showSample.do, not the original input page,
/chooseFormat1/forms/form1.jsp.

Finally, Figure 12–4 presents a good resume with all the input fields completed
correctly. The result shown is for a title size of 60 and a foreground color of red.

Listing 12.5 chooseFormat1/WEB-INF/classes/results/sample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Sample</TITLE>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>
<bean:write name="formatFormBean"
 property="styleSheet" filter="false"/>
</HEAD>
<BODY>
<H1 ALIGN="CENTER">Your Name Here</H1>
Intro. Blah blah blah. Yadda, yadda, yadda.
<H2>Professional Experience</H2>

 Blah blah blah.
 Yadda, yadda, yadda.

<H2>Education</H2>
Blah blah blah. Yadda, yadda, yadda.
</BODY></HTML>

Chapter 12 ■ The Struts Framework: Validating User Input606

Figure 12–2 Input page for specifying text sizes, foreground color, and background color
for sample resume.

Figure 12–3 Result of not completing the input form correctly (missing title size and
foreground color). On submission, the request is sent back to the input page using the
RequestDispatcher. Thus, the URL remains the submitted .do action. Above the form
fields, the html:messages tag displays the error messages.

12.2 Validating in the Form Bean 607

12.2 Validating in the Form Bean

In this section, instead of validating input fields in the Action class, we show you
how to validate the input fields in the ActionForm bean. In practice, validation in
the form bean is a better choice, as the input fields are immediately available to the
bean. Moreover, the Struts framework is designed to support validation of input
fields in the form bean.

Struts Flow of Control
Figure 12–5 illustrates the Struts flow of control, with updates for validation in the
ActionForm bean. When the user submits the input page, Struts populates the form
bean with the input fields and then calls validate on the bean. In the validate
method, you can check the input fields for errors and return any associated error
messages. If validation does return error messages, Struts automatically forwards the
request back to the input page where you can display the messages back to the user.
If the form bean returns no errors, then the Struts flow continues as normal, sending
the request to the Action.

Figure 12–4 Good resume resulting from correctly completing all five input fields. The
title size is 60 and the foreground color is red.

C
hapter

12
■

The Struts Fram
ew

ork: V
alidating U

ser Input
6

0
8

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean. Call
validate. If nonempty

result, interrupt process
and forward to input

page. Otherwise, pass
to execute method.

Use html:form to build the
form. Use html:messages
to display error messages.

forward to

Figure 12–5 Flow of the request through the Struts framework with validation of the input fields in the ActionForm bean. After
populating the bean with the input fields, Struts calls validate on the bean. If validate returns errors, the request is forwarded
back to the input page.

12.2 Validating in the Form Bean 609

Performing Validation in the ActionForm
As Struts automatically populates the form bean with the input fields, it seems only
natural to check the input fields there. Simply add logic to the validate method
for checking the fields, and if needed, add any error message for later display on the
input page.

The following is our recommended approach for validating input fields in the
ActionForm.

• Create validate method in ActionForm. Check each input field
in the validate method of the ActionForm. If no errors are found
return either a null or an empty ActionErrors object. Otherwise,
for each error, add an ActionMessage entry to ActionErrors.
Furthermore, instead of hard-coding messages directly in the bean,
we recommend using a properties file for the messages.

• Specify and input page in struts-config.xml. If validate
returns a nonempty ActionErrors object, the system automatically
forwards the request back to an input page. Use the input attribute
of action in struts-config.xml to specify to which page to return the
user.

• Create a property file with error messages. When creating error
messages, reference messages in a properties file. Each message
should have a unique key for identification. Modify struts-config.xml

to declare the properties file.
• Use html:messages in input form. Use the html:messages tag

to list error messages on the input form. If no messages exist, the tag
produces no output.

Details follow.

Creating a validate Method in the ActionForm
By default, Struts automatically calls validate on the form bean after populat-
ing the fields. An example of a validate method is shown in the following code
fragment:

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {

ActionErrors errors = new ActionErrors();
 if (isSomeProblem(getSomeProperty())) {
 errors.add("someName",
 new ActionMessage("some.key"));
 errors.add("someOtherName",
 new ActionMessage("literal message", false));
 }

Chapter 12 ■ The Struts Framework: Validating User Input610

 ...
return(errors);

}

In the validate method, first create an ActionErrors object. Then, check
each property of the form bean. If the data has no errors, return null or an empty
ActionErrors object. For each error, add an ActionMessage entry to Action-
Errors.

Similar to ActionMessages (discussed in Section 12.1), the add method of
ActionErrors takes a name and an ActionMessage argument. The name argu-
ment lets you associate a message to a particular input field.

When constructing an ActionMessage, provide a key that maps to a corre-
sponding message in the properties file. If you would like to state the message
directly (versus referencing a key in the properties file) in the ActionMessage con-
structor, simply provide the message as the first argument and false as the second
argument.

Note, that in Struts 1.2, ActionErrors was depreciated; however it is still in use
as the return value of the validate method in ActionForm. In later versions of
Struts, we expect complete removal of ActionErrors in favor of Action-
Messages. Except for the ActionForm class, use ActionMessages wherever
possible to hold any error messages.

For more details on ActionErrors and ActionMessages, see the Struts API
at http://struts.apache.org/1.x/struts-core/apidocs/.

Specifying Input Page in struts-config.xml
If validate returns a nonempty ActionErrors object, Struts forwards the
request to an input form. Use the input attribute of action in struts-config.xml to
specify the input page. The following is an action example with an input attribute
stating that original-form.jsp is the input page to return the request if validation
errors occur in the form bean.

<action path="/somePath/someActionName"
 type="somePackage.SomeClass"
 name="someFormBean"
 scope="request"
 input="/somePath/original-form.jsp"

validate="true">
<forward name="..." path"..."/>

</action>

Specifying the validate attribute is optional, as validation is the default
behavior.

http://struts.apache.org/1.x/struts-core/apidocs/

12.2 Validating in the Form Bean 611

Core Note

When using form beans, the default behavior of Struts is to populate the
form bean with the input fields and then call validate on the bean.
Specifying validate="true" is optional.

Preventing Validation
In certain applications, you may use the same bean in multiple actions. What if
you want some actions to perform validation, and other actions not to perform
validation. The solution is to simply state validate="false" for actions that do
not require validation.

Creating a Properties File with Messages
Each ActionMessage can refer to a message in the properties file. In the proper-
ties file, add key–message pairs for errors commonly encountered with the input
fields. Then, when creating an ActionMessage, reference the key corresponding to
the appropriate error message in the properties file.

A sample properties file is given here:

-- Custom validation messages --
some.key=Some Message
some.other.key=Some Other Message

For more information on configuring Struts for properties files, see Section 11.1
(Using Properties Files).

Using html:messages in the Input Form
As covered in Section 12.1 (Validating in the Action Class), use html:messages on
the input page to list all error messages returned by the form bean’s validate
method. However, in this case, because the error messages are stored in Action-
Errors, specify false for the message attribute. False indicates that the messages
were not placed in an ActionMessages object, but rather an ActionErrors
object. An example illustrating the use of html:messages is given here:

<html:messages id="msg" message="false">
 <bean:write name="msg"/>
</html:messages>

As a reminder, the html:messages tag iterates over the error messages, placing
each message in page scope (referenced by the variable identified by id). With
bean:write, you can access and display the message.

Chapter 12 ■ The Struts Framework: Validating User Input612

Instead of listing all the messages in a single group, you can target only those mes-
sages for a particular field. Use the property attribute to indicate which messages
to extract from the collection.

For instance, suppose that you used the following names when adding messages
to ActionMessages:

messsages.add("someName", new ActionMessage("some.key1"));
messsages.add("someOtherName", new ActionMessage("some.key2"));
messsages.add("someName", new ActionMessage("some.key3"));

Then, on the input page, you could display only someName messages with

<html:messages id="msg" message="false"
 property="someName">
 <bean:write name="msg"/>
</html:messages>

Example: Choosing Colors and
Font Sizes for a Resume (Take 2)

Now, we revisit the first example presented in this section—the online sample
resume. However, instead of validating the input fields in the Action, we validate
the input fields in the ActionForm.

As before, the user can specify the fonts and colors for generating a resume. If the
user enters bad or missing data, validation in the form bean results in returning the
request back to the input page, where html:messages displays any messages.

Next, we outline our general design strategy for this modified example.

• Use an input form to collect font sizes and colors. The user can specify
font sizes for the resume title, heading, and body. The user can also
specify a foreground and background color for the resume.

• Use html:messages to print out any messages on the input page.
• Use ActionForm for input data. The validate method checks

if any parameters are missing. If so, validate creates an
ActionMessage keyed to a named message in the properties file.
Add each ActionMessage to the ActionErrors returned by the
method.

• Use Action to always map to the output page. No validation is
performed in Action, only in the form bean.

• In struts-config.xml, provide an input attribute in action that
refers to the input form.

12.2 Validating in the Form Bean 613

Listing 12.6 presents our new FormatFormBean with a validate method that
checks each of the five input fields. If a field is missing, the method adds an
ActionMessage to the ActionErrors collection. The ActionMessage con-
structor provides a key to the true message in the properties file.

The properties file for this example is given in Listing 12.7. We place this file in
the WEB-INF/classes directory and add a message-resources element to
struts-config.xml. Listing 12.8 shows our struts-config.xml file.

In struts-config.xml, we also add an input attribute to the action element, as
shown in the following code fragment:

<action path="/actions/showSample"
 type="coreservlets.ShowSampleAction"
 name="formatFormBean"
 scope="request"
 input="/forms/index.jsp">
 <forward name="success"
 path="/WEB-INF/results/sample.jsp"/>
</action>

If validate returns any errors, Struts sends the request back to /forms/index.jsp.
The input page, /forms/index.jsp, is given in Listing 12.9. Essentially, this page is

the same as Listing 12.1, except now html:messages finds the messages in an
ActionErrors object (located in the request scope) instead of an Action-
Messages object.

Listing 12.10 presents our modified ShowSampleAction class. The Action
performs no validation (the input has to be good, as the ActionForm performs all
the validation before Struts even invokes the Action). Thus, the execute method
always returns a "success" condition that maps to /WEB-INF/results/sample.jsp.

Listing 12.6
chooseFormat2/WEB-INF/classes/coreservlets/
FormatFormBean.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Bean with fields for formatting resume. The bean provides
 * a validate method for checking the input fields. The Struts
 * system calls the validate method after populating the fields.
 */

public class FormatFormBean extends ActionForm {
 private String titleSize = "";
 private String headingSize = "";

Chapter 12 ■ The Struts Framework: Validating User Input614

 private String bodySize = "";
 private String bgColor = "";
 private String fgColor = "";

 public String getTitleSize() {
 return(titleSize);
 }

 public void setTitleSize(String titleSize) {
 this.titleSize = titleSize;
 }

 public String getHeadingSize() {
 return(headingSize);
 }

 public void setHeadingSize(String headingSize) {
 this.headingSize = headingSize;
 }

 public String getBodySize() {
 return(bodySize);
 }

 public void setBodySize(String bodySize) {
 this.bodySize = bodySize;
 }

 public String getBgColor() {
 return(bgColor);
 }

 public void setBgColor(String bgColor) {
 this.bgColor = bgColor;
 }

 public String getFgColor() {
 return(fgColor);
 }

 public void setFgColor(String fgColor) {
 this.fgColor = fgColor;
 }

Listing 12.6
chooseFormat2/WEB-INF/classes/coreservlets/
FormatFormBean.java (continued)

12.2 Validating in the Form Bean 615

 public String getStyleSheet() {
 return(
 "<STYLE TYPE=\"text/css\">\n" +
 "<!--\n" +
 "H1 { font-size: " + titleSize + "px; }\n" +
 "H2 { font-size: " + headingSize + "px; }\n" +
 "BODY { font-size: " + bodySize + "px;\n" +
 " background-color: " + bgColor + ";\n" +
 " color: " + fgColor + "; }\n" +
 "-->\n" +
 "</STYLE>");
 }

 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();
 if (isMissing(getTitleSize())) {
 errors.add("title",
 new ActionMessage("titleSize.required"));
 }
 if (isMissing(getHeadingSize())) {
 errors.add("heading",
 new ActionMessage("headingSize.required"));
 }
 if (isMissing(getBodySize())) {
 errors.add("body",
 new ActionMessage("bodySize.required"));
 }
 if (isMissing(getBgColor())) {
 errors.add("bg",
 new ActionMessage("bgColor.required"));
 }
 if (isMissing(getFgColor())) {
 errors.add("fg",
 new ActionMessage("fgColor.required"));
 } else if (getFgColor().equals(getBgColor())) {
 errors.add("fg",
 new ActionMessage("colors.notMatch"));
 }
 return(errors);
 }

 private boolean isMissing(String value) {
 return((value == null) || (value.trim().equals("")));
 }
}

Listing 12.6
chooseFormat2/WEB-INF/classes/coreservlets/
FormatFormBean.java (continued)

Chapter 12 ■ The Struts Framework: Validating User Input616

Listing 12.7
chooseFormat2/WEB-INF/classes/
MessageResources.properties

-- Custom validation messages --
titleSize.required=Title size required.
headingSize.required=Heading size required.
bodySize.required=Body text size required.
bgColor.required=Background color required.
fgColor.required=Foreground color required.
colors.notMatch=Foreground and background colors must be different.

Listing 12.8 chooseFormat2/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="formatFormBean"
 type="coreservlets.FormatFormBean"/>
 </form-beans>
 <action-mappings>
 <action path="/actions/showSample"
 type="coreservlets.ShowSampleAction"
 name="formatFormBean"
 scope="request"
 input="/forms/index.jsp">
 <forward name="success"
 path="/WEB-INF/results/sample.jsp"/>
 </action>
 </action-mappings>
 <message-resources parameter="MessageResources"
 null="false"/>
</struts-config>

Listing 12.9 chooseFormat2/forms/index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Choose Format</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Choose Format</H1>
Please select the font sizes and colors that you would
like used to display your resume.

12.2 Validating in the Form Bean 617

<P>
<CENTER>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>

<html:messages id="msg" message="false">

 <bean:write name="msg"/>

</html:messages>

<html:form action="/actions/showSample">
 Title size: <html:text property="titleSize"/>

 Heading size: <html:text property="headingSize"/>

 Body text size: <html:text property="bodySize"/>

 Background color: <html:text property="bgColor"/>

 Foreground color: <html:text property="fgColor"/>

 <html:submit value="Show Sample"/>
</html:form>
</CENTER>
</BODY></HTML>

Listing 12.10
chooseFormat2/WEB-INF/classes/coreservlets/
ShowSampleAction.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Validation if performed in FormBean, so Action
 * simply forwards based on "success" condition.
 */

public class ShowSampleAction extends Action {
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 return(mapping.findForward("success"));
 }
}

Listing 12.9 chooseFormat2/forms/index.jsp (continued)

Chapter 12 ■ The Struts Framework: Validating User Input618

Results
Figure 12–6 shows the input page for the sample resume builder. If the user submits
the page without completing all the fields, validation in the ActionForm bean
causes the request to return to the input page, as shown in Figure 12–7. Here, the
user did not provide sizes for the title, heading, and body text, so the validate
method of the ActionForm added three messages to the ActionErrors object.
Because of the errors, Struts returned the request to the input page where the
html:messages tag displays the three messages.

Notice that in Figure 12–7, the RequestDispatcher handles the request flow
through forwarding. Thus, when Struts returns the request to the input page, the
browser address remains the submitted .do address, not the input page address.

Figure 12–8 shows the resulting sample resume when the user completes all five
input fields with valid values. The result shown is for a title size of 60, a heading size
of 30, and a body text size of 15.

Figure 12–6 Input page for specifying text sizes, foreground color, and background color
for our sample resume.

12.2 Validating in the Form Bean 619

Figure 12–7 Result of not completing the input form correctly (missing title, heading,
and body sizes). The html:messages tag displays the error messages created by the
validate method of the ActionForm bean.

Figure 12–8 Resulting sample resume when the user completes all input fields correctly.
As shown, the title size is 60, the heading size is 30, and the body text size is 15.

Chapter 12 ■ The Struts Framework: Validating User Input620

Using Parameterized Error Messages
In Section 11.1 (Using Properties Files), we explained how to parameterize messages
in a properties file. The main benefit of parameterized messages is that they can
reflect runtime values versus static values. If you parameterize messages wisely, your
application can yield more descriptive messages with less repetition.

To support parameterized messages, you first need to modify your messages to
indicate where the parameterized substitution should occur and then to add para-
metric arguments when you create your ActionMessages. We discuss the steps
here.

• Add parametric notation to messages in the properties file. Use
{n} notation in your messages to indicate the location of the nth
parametric substitution. For instance,

value.required={0} is required

• Add parametric arguments to ActionMessages. In the
validate method of your ActionForm, add extra arguments to
your ActionMessage constructors. Provide one argument for each
parametric placeholder. The ActionMessage constructor allows up
to four separate arguments. If you need more arguments, supply an
array.

When displaying parameterized messages with html:messages, the message is
filtered for HTML characters, removing the risk of cross-site scripting attacks. See
Core Servlets and JavaServer Pages, Volume 1 for more on cross-site scripting
attacks.

Example: Validation with
Parameterized Messages

Again, we revisit our earlier sample resume application, but now we modify the error
messages to contain dynamic content through message parameterization. The follow-
ing is our strategy for this example.

• Leave the input form, Action, and struts-config.xml file as before.
• Parameterize the custom error messages. Because each input field

could have the common problem of a missing value, use a single
parameterized message corresponding to value.required in the
properties file.

• Modify each ActionMessage in the ActionForm to provide an
argument for the parameterized message.

12.2 Validating in the Form Bean 621

Listing 12.11 presents our new FormatFormBean. The only changes are in the
validate method. In the ActionMessage constructors, we provide a parameter
value for the message. The code for a missing title size is given here:

errors.add("titleSizeMissing",
 new ActionMessage("value.required", "Title size"));

By passing in "Title Size" for the {0}th argument in the message, "{0} is
required.", the final message becomes "Title size is required."

Our parameterized properties file is given in Listing 12.12.

Listing 12.11
chooseFormat3/WEB-INF/classes/coreservlets/
FormatFormBean.java

package coreservlets;

import javax.servlet.http.*;
import org.apache.struts.action.*;

/** Bean with fields for formatting resume. ActionMessages
* provide additional arguments for use with parameterized

 * messages in properties file.
 */

public class FormatFormBean extends ActionForm {
 private String titleSize = "";
 private String headingSize = "";
 private String bodySize = "";
 private String bgColor = "";
 private String fgColor = "";

...

 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();
 if (isMissing(getTitleSize())) {
 errors.add("titleSizeMissing",
 new ActionMessage("value.required",
 "Title size"));
 } else if (!isInt(getTitleSize())) {
 errors.add("titleNotInt",
 new ActionMessage("value.int",
 "title size",
 getTitleSize()));
 }
 if (isMissing(getHeadingSize())) {
 errors.add("headingSizeMissing",
 new ActionMessage("value.required",
 "Heading size"));

Chapter 12 ■ The Struts Framework: Validating User Input622

 } else if (!isInt(getHeadingSize())) {
 errors.add("headingNotInt",
 new ActionMessage("value.int",
 "heading size",
 getHeadingSize()));
 }
 if (isMissing(getBodySize())) {
 errors.add("bodySizeMissing",
 new ActionMessage("value.required",
 "Body text size"));
 } else if (!isInt(getBodySize())) {
 errors.add("bodyNotInt",
 new ActionMessage("value.int",
 "body text size",
 getBodySize()));
 }
 if (isMissing(getBgColor())) {
 errors.add("bgColorMissing",
 new ActionMessage("value.required",
 "Background color"));
 }
 if (isMissing(getFgColor())) {
 errors.add("fgColorMissing",
 new ActionMessage("value.required",
 "Foreground color"));
 } else if (getBgColor().equals(getFgColor())) {
 errors.add("colorsIdentical",
 new ActionMessage("colors.match",
 getBgColor()));
 }
 return(errors);
 }

 private boolean isMissing(String value) {
 return((value == null) || (value.trim().equals("")));
 }

 private boolean isInt(String potentialInt) {
 boolean isInt = true;
 try {
 int x = Integer.parseInt(potentialInt);
 } catch(NumberFormatException nfe) {
 isInt = false;
 }
 return(isInt);
 }
}

Listing 12.11
chooseFormat3/WEB-INF/classes/coreservlets/
FormatFormBean.java (continued)

12.2 Validating in the Form Bean 623

Results
Except for the error messages, the results for this example are similar to the previous
one. See Figure 12–6 for the input page. If the user fails to complete any input fields
correctly, customized error messages result, as shown in Figure 12–9. See earlier
Figure 12–8 for a representative resume based on a correctly completed input form.

Listing 12.12
chooseFormat3/WEB-INF/classes/
MessageResources.properties

-- Custom validation messages --
value.required={0} is required.
value.int=Whole number required for {0}; "{1}" is not an integer.
colors.match=The foreground and background color are both "{0}".

Figure 12–9 Result of the user not completing the input form correctly. After Struts routes
the submission back to the input page, parameterized error messages help to clarify the
problems with the submitted input.

Chapter 12 ■ The Struts Framework: Validating User Input624

12.3 Using the Automatic
Validation Framework

Writing code to validate every input field on your Web site can become quite tedious,
so the designers of Struts built in a complete automatic validation framework. With
this framework, you can easily check for missing or badly formatted fields.

In this section, we show you how to add automatic validation of input fields to
your Struts application. First, though, we review various validation approaches.

Manual versus Automatic Validation
We briefly discuss here the differences between manual and automatic validation.

• Manual validation. Manual validation of input fields is the most
flexible. You have full access to beans, to business logic, and to the
application database. Unfortunately, manual validation often results in
repeated logic and often runs only on the server. If you also do
client-side validation, then most likely, you’re writing lots of tedious
JavaScript code embedded in JSP code. This approach violates the
Struts strategy of placing as much as possible in editable files versus in
code that must be compiled.

• Automatic validation. Automatic validation typically consolidates
the amount of validation code needed and lets you use standard
validation rules. Also, automatic validation runs on the server, but can
optionally include JavaScript that runs on the client. With automatic
validation in Struts, instead of building code that requires compilation,
you can easily describe the validation rules in XML files.

Client-Side versus Server-Side Validation
A common question for the new Web developer is this: Do I validate data on the client
or on the server? For security reasons alone, you must always validate the data on the
server—a hacker could simply bypass your input forms completely. However, along
with server-side validation, you can obtain benefits through client-side validation.

Next, we discuss client-side and server-side validation.

• Client-side validation. For client-side validation, JavaScript code
verifies the format of input fields. If any fields are bad, a dialog box
can warn the user of any illegal values. If the input is bad, JavaScript
can block the submission to the server.

12.3 Using the Automatic Validation Framework 625

Client-side validation with JavaScript tends to be very fast. The
validation does not require a trip to the server. However, there are
limitations. You cannot do validation that requires application logic,
such as talking to a database server. Finally, with client-side validation,
you need to consider the possibility of the user deliberately or
accidentally bypassing JavaScript (i.e., turning it off).

• Server-side validation. For server-side validation, Java code on the
server can validate the fields. Most likely, server-side validation
performs similar checks as the client-side validation, but can invoke
stronger application logic for additional checks. Instead of a pop-up
dialog box, you can display warning messages back on the input form.
Unfortunately, server-side validation is slower, but you really have no
choice here. You must do server-side validation regardless of whether
or not you do client-side validation.

Core Approach

Always perform server-side validation of input data. Don’t simply rely on
client-side validation as the user (or a hacker) can accidentally or
deliberately bypass the JavaScript validation.

Struts Flow of Control
Figure 12–10 illustrates the Struts flow of control, with updates for the auto-
mated validation. When the user submits the input form, Struts first populates
the form bean with input data and then calls the validate method inherited
from ValidatorForm. At this point, Struts checks the field entries against the
rules in validator.xml.

If the validate method returns an empty array of error messages, then the
request is sent to the execute method of the Action. Otherwise, the Struts system
interrupts the process and sends the request back to the input page. By using the
html:messages tag on the input page, you can display any error messages.

C
hapter

12
■

The Struts Fram
ew

ork: V
alidating U

ser Input
6

2
6

Form Action

JSP

JSP

struts-config.xml

Determine
Action

Choose
JSP Page

re
qu

es
t..

./S
om

eF
or

m
.js

p

submit form
request.../blah.do

invoke execute
method

return condition

forward to

return final result

Use bean:write.

Populate bean. Call validate.
Inherited version checks entries

in validator.xml. If nonempty
result, interrupt process and

forward to input page. Otherwise,
pass to execute method.

Use html:form to build the
form. Use html:messages
to display error messages.

forward to

Figure 12–10 Flow of the request through the Struts framework with automatic validation. After populating the form bean, Struts
checks the entries against the validation rules in v a l i d a t o r . x m l .

12.3 Using the Automatic Validation Framework 627

Steps in Using Automatic Validation
Successful incorporation of automatic validation in your Struts application requires a
lot of changes. To help you configure Struts automatic validation, we recommend the
following six steps.

1. Configure struts-config.xml. In struts-config.xml, indicate the
URI of the input form, indicate the properties file, and turn on the
automatic validator.

2. Edit the properties file. In the properties file, edit the standard val-
idator messages (errors.invalid, etc.) and create names for
replacements of parameterized arguments ({0}, {1}, etc.) in these
standard messages.

3. Put validation rules in validation.xml. For each input field, spec-
ify one or more validation rules in validation.xml. Determine the
name of the corresponding error message for the validation rule. Look
in the properties file to see how many args are needed for the mes-
sage and define arg values as necessary.

4. Have form bean extend ValidatorForm. Instead of Action-
Form, the form bean should now extend ValidatorForm.

5. Use html:messages tag. As shown earlier in Section 12.2 (Validat-
ing in the Form Bean), use the html:messages tag on the input
page to display any error messages.

6. (Optional) Enable JavaScript validation. If desired, modify the
input page to support client-side validation of the input fields.

Details follow.

Step 1: Configure struts-config.xml
To support automatic validation of input fields, make the following three changes to
struts-config.xml:

• List the address of the input form. In the action element,
provide an input attribute for the input page. If errors are found in
the input fields, Struts returns the request to this input page. An
example is given here:

<action path="..."
type="..."
name="..."
scope="request"

 input="/inputFormAddress.jsp">

Chapter 12 ■ The Struts Framework: Validating User Input628

• List the the properties file. After the action-mapping element
in struts-config.xml, list the properties file with the
message-resource element, as shown here:

<message-resources parameter="MessageResources"/>

If supporting an existing application with a controller section,
place the message-resources entry after the controller entry.
Remember that Struts assumes a file extension of .properties and that
the file is located in WEB-INF/classes. For more information on prop-
erties files, see Section 11.1 (Using Properties Files).

• Turn on the automatic validator. To turn on automatic validation
add the validator plug-in to struts-config.xml, as given here:

<plug-in
 className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property property="pathnames"
 value="/org/apache/struts/validator/validator-rules.xml,
 /WEB-INF/validation.xml"/>
</plug-in>

Don’t enter the plug-in element by hand. Uncomment and copy
the entry from the struts-blank-1.3.5 application (bundled in
struts-1.3.5-apps.zip at http://struts.apache.org/downloads.html).

Step 2: Edit the Properties File
Automatic validation relies heavily on error messages from the properties file. As a
starting point, use the MessageResources.properties file from the struts-blank-1.3.5
application.

In the following list, we recommend changes to the properties file.

• Edit the standard “validator” error messages. As needed, edit
the validator messages in the properties file. A couple of examples are
given here:

errors.invalid={0} is invalid.
errors.maxlength={0} cannot be greater than {1} characters.

The struts-blank-1.3.5 properties file has several typos in it, for
instance, “an” long, “an” byte, “can not”, etc. So, you will want to fix
these typos.

• Add prompts or messages to substitute into error messages. For
the error messages in your application, provide a key–message pair to
substitute for {0}, {1}, and so on. Examples follow.

http://struts.apache.org/downloads.html

12.3 Using the Automatic Validation Framework 629

inputForm.firstName=First name
inputForm.lastName=Last name
inputForm.zipCode=5-digit ZIP Code

Later, in the validation rules, you can specify which prompts or mes-
sages to substitute in the error messages. Basically, the parameterized
messages and the values (prompts) to substitute into the parameter-
ized messages are all self-contained in the properties file. You just
need to refer to the prompts in your validation rule.

Step 3: Put Validation Rules in validation.xml
We recommend starting with the validation.xml file provided with struts-blank-1.3.5

(bundled in struts-1.3.5-apps.zip at http://struts.apache.org/downloads.html).
When you first examine an existing validation file it may seem like a mystery. For

instance, where are the validation rules? If the validation rule fails, what is the error
message?

To help you understand validation files, we initially examine the overall structure
of the validation.xml file and then, in the next section, we examine how to define
individual validation rules.

Understanding the Structure of validation.xml
The overall structure of validation.xml has the following elements.

• form-validation and formset elements. These are the main
enclosing elements for all the validation rules. The general structure
of validation.xml is given here:

<!DOCTYPE form-validation PUBLIC
"-//Apache Software Foundation//DTD Commons Validator Rules
Configuration 1.3.0//EN"
"http://jakarta.apache.org/commons/dtds/validator_1_3_0.dtd">
<form-validation>
 <formset>
 <form ...> ... </form> // Rules for 1st HTML form
 <form ...> ... </form> // Rules for 2nd HTML form
 ...
 </formset>
</form-validation>

The form-validation element is the root container for the XML
file. The formset element defines one or more forms for a locale.

• form elements. The form element is an XML container for a set of
field elements in a particular form, where each field element would
correspond to an input field on the form. The general format for the
form element is given here:

http://struts.apache.org/downloads.html

Chapter 12 ■ The Struts Framework: Validating User Input630

<form name="beanName">
 <field ...> ... </field>
 ...
</form>

The value of the name attribute must match the value of the corre-
sponding form-bean in struts-config.xml.

• field elements. Each field element defines a set of validation
rules for an input field (i.e., bean property). An example of a field
definition is given here:

<field property="beanPropertyName"
 depends="required">
 <arg key="inputForm.firstName"/>
</field>

The value of the property attribute must match an input field (bean
property). The depends attribute can contain a comma-separated list
of standard validation rules as defined in validator-rules.xml. In the
next subsection, we cover validation rules in more detail.

Defining Fields in validation.xml
The Struts Validation framework contains numerous built-in validation rules (see
http://struts.apache.org/1.x/faqs/validator.html). Most likely, they’re all you’ll
need. Following, we summarize the steps to set up individual validation rules for
each of your input fields.

• Specify dependency of validation rules. For each field, specify
one or more validation rules from the list of built-in choices
(required, mask, email, etc.). Use

<field property="..." depends="...">

where property identifies the bean property to check and depends
specifies which rule to check the field against. You can specify more
than one validation rule by comma separating them, as in

<field property="propName"
depends="ruleName1, ruleName2">

Table 12.2 on page 632 summarizes the built-in validation rules avail-
able from validation-rule.xml. For a complete listing of the available
validation rules, see http://struts.apache.org/1.x/faqs/validator.html.

http://struts.apache.org/1.x/faqs/validator.html
http://struts.apache.org/1.x/faqs/validator.html

12.3 Using the Automatic Validation Framework 631

• Determine name of error message. Find the name of the error
message generated when the rule fails. The name corresponds to a
message in the properties file. Usually, the name of the error message
is errors.ruleName, where ruleName is the name of the rule. To
be sure, check the value given by the msg attribute for the validation
rule in validator-rules.xml.

Note that in Struts 1.3.5, the validator-rules.xml file is bundled in
struts-core-1.3.5.jar. To examine this file, you may need to unjar the
file

jar xf struts-core-1.3.5.jar validator-rules.xml

or use a standard decompression utility like WinZip.
• Determine arguments for error message. If starting with the

struts-blank-1.3.5 application, examine the properties file,
MessageResources.properties, to see what {} arguments the various
error messages require. A couple of examples are given here:

errors.invalid={0} is invalid.
errors.maxlength={0} cannot be greater than {1} characters.

The first error message, errors.invalid, takes one argument. The
second error message, error.maxlength, takes two arguments.

• Supply an arg element for each placeholder in error message.
Use the arg element to specify the text to substitute for each
placeholder.

field property="propName" depends="ruleName">
<arg key="key.Name1"/>
<arg key="key.Name2"/>

</field>

Struts substitutes text into the placeholders {} in the same order as
listed in the validation rule. Instead of explicitly stating the text in the
validation rule, use the key attribute to refer to a substitution value in
the properties file. In this manner, all your error messages and substi-
tution values for the {} arguments are contained in a single file.

The following is an example:

<field property="firstName"
 depends="required">
 <arg key="inputForm.firstName"/>
</field>

Chapter 12 ■ The Struts Framework: Validating User Input632

This validation rule states that the firstName field is required in
the form. If missing, the error message in the properties file,
errors.required, should use the value from inputForm.first-
Name to substitute into the error message. The properties file would
contain the following two messages:

inputForm.firstName=First name
errors.required={0} is required.

Step 4: Have Form Bean Extend ValidatorForm
For automatic validation, instead of extending ActionForm, your form bean should
extend ValidatorForm. See the following code fragment:

public class YourFormBean extends ValidatorForm {
 ...
 }

The ValidatorForm class provides support for Struts to validate the bean prop-
erties against the rules in validation.xml.

Step 5: Put html:messages Tag in Input Page
As with manual validation (Section 12.2), add html:messages to your input page
to display any error messages when the request is returned to the input page.

Table 12.2 Common Validation Rules Defined in validation-rules.xml

Validator Description

required Field value must be nonempty (contains characters other than
whitespace). Default error message in properties file is
errors.required.

mask Field value must match a regular expression given by a mask attribute.
Default error message in properties file is errors.invalid.

email Field value must have a valid e-mail address format. Default error
message in properties file is errors.email.

creditCard Field value should be a legal credit card number (based on Luhn
checksum). Use 4111111111111111 for testing. Default error
message in properties file is errors.creditcard.

12.3 Using the Automatic Validation Framework 633

Step 6: (Optional) Enable JavaScript Validation
Struts has excellent support for client-side validation with JavaScript. To enable Java-
Script validation on your input page, do the following.

• Add html:javascript tag to JSP page. Add a tag similar to

<html:javascript formName="beanName"/>

to the input page, where beanName is the name of the form bean for
the page. The html:javascript tag adds all the necessary Java-
Script code to validate the input fields on the client browser. You can
place this tag anywhere on the input page. We typically place the tag
after the closing html:form tag.

This tag can produce hundreds of lines of JavaScript code in your
input page (depending on which validation rules you select). Believe
us, you don’t want to write all this JavaScript code yourself!

• Add the onsubmit attribute to html:form tag. In your
html:form tag, add an onsubmit attribute, as shown here:

<html:form action="/actions/someAction"
 onsubmit="return validateBeanName(this);">

where BeanName is the name of the form bean for the page.
When the user submits the page, the browser automatically calls the
JavaScript function, validateBeanName. If the function returns
false, meaning that errors were found with the input fields, then the
browser cancels the submission to the server. Otherwise, if the func-
tion returns true (the input fields are fine), the browser submits the
page to the server.

Example: Automatic Validation
Next, using the Struts Validation framework, we create a Web site for ordering the
famous Un-Divet tool. We incorporate both client-side and server-side validation to
check the fields of the Un-Divet ordering form.

Next, we go through the six steps in using automatic validation.

Chapter 12 ■ The Struts Framework: Validating User Input634

Step 1: Configure struts-config.xml
Listing 12.13 presents our struts-config.xml file. We define an action that uses the
bean, orderFormBean, to the hold the input fields of the ordering form. Then, to
support automatic validation, we provide an input page attribute of /forms/

order-form.jsp. If validation fails, Struts routes the request back to this input page.
We also add a message-resources element for the properties file that holds all
the error messages. Finally, we enable the validator plug-in.

Listing 12.13 orders/WEB-INF/struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.3//EN"
 "http://struts.apache.org/dtds/struts-config_1_3.dtd">
<struts-config>
 <form-beans>
 <form-bean name="orderFormBean"
 type="coreservlets.OrderFormBean"/>
 </form-beans>

 <action-mappings>
 <action path="/actions/order"
 type="coreservlets.Order"
 name="orderFormBean"
 scope="request"
 input="/forms/order-form.jsp">
 <forward name="success"
 path="/WEB-INF/results/order-confirmation.jsp"/>
 </action>
 </action-mappings>

<message-resources parameter="MessageResources"/>

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/org/apache/struts/validator/validator-rules.xml,
 /WEB-INF/validation.xml"/>

</plug-in>
</struts-config>

12.3 Using the Automatic Validation Framework 635

Step 2: Edit the properties File
Listing 12.14 presents our properties file, MessageResources.properties. To create
this f i le , we started with the MessageResources.properti es fi le from the
struts-blank-1.3.5 application, then added the following custom messages to the
beginning of the file:

inputForm.firstName=First name
inputForm.lastName=Last name
inputForm.address=Postal address
inputForm.zipCode=5-digit ZIP Code
inputForm.creditCardNumber=Credit card number
inputForm.email=Email address

Each one of these messages corresponds to an ordering field on the input form.
When substituted into one of the generic validation messages, they tell the user
which field failed validation.

Listing 12.14 orders/WEB-INF/classes/MessageResources.properties

-- Custom messages for this application --
inputForm.firstName=First name
inputForm.lastName=Last name
inputForm.address=Postal address
inputForm.zipCode=5-digit ZIP Code
inputForm.creditCardNumber=Credit card number
inputForm.email=Email address
-- validator --
errors.invalid={0} is invalid.
errors.maxlength={0} cannot be greater than {1} characters.
errors.minlength={0} cannot be less than {1} characters.
errors.range={0} is not in the range {1} through {2}.
errors.required={0} is required.
errors.byte={0} must be a byte.
errors.date={0} is not a date.
errors.double={0} must be a double.
errors.float={0} must be an float.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.short={0} must be a short.
errors.creditcard={0} is not a valid credit card number.
errors.email={0} is an invalid email address.
-- other --
errors.cancel=Operation cancelled.
errors.detail={0}
errors.general=The process did not complete. Details should follow.
errors.token=Request could not be completed. Operation is not in
sequence.

Chapter 12 ■ The Struts Framework: Validating User Input636

Step 3: Put Validation Rules in validation.xml
Listing 12.15 presents our validation.xml file. We specify validation rules for each of
the six input fields on the ordering form. Details follow.

• firstName. This field is validated against the Struts built-in
required rule. If the firstname is only whitespace, then validation
fails and the message corresponding to errors.required results.
The error message has only one parameterized argument, {0}, for
which we specify the substitution of inputForm.firstName from
the properties file.

• lastName. Similarly, this field is also required. If the validation
rule fails, Struts substitutes the value corresponding to
inputForm.lastName in the properties file into the
errors.required message.

• address. This field is also required. If validation fails, Struts
substitutes the value corresponding to inputForm.address into
the errors.required message.

• zipCode. The zipCode field has two validation rules. Not only is the
field required, the field must also conform to the specified mask.
For the mask, we provide a regular expression with the var element.

<var>
 <var-name>mask</var-name>
 <var-value>^\d{5}\d*$</var-value>
</var>

The regular expression, ^\d{5}\d*$, requires that the value contain
five decimal digits. If not, Struts substitutes the text corresponding to
inputForm.zipCode into the errors.zipcode message.

• creditCardNumber. This field also has two validation rules,
required and creditCard. If the value is missing or does not meet
the algorithm for a legal credit card, Struts displays the corresponding
error message, errors.required or errors.creditcard,
respectively. In both cases, Struts substitutes the text corresponding to
inputForm.creditCardNumber into the error message.

• email. This field also has two validation rules, required and
email. If the value is missing or does not conform to the format of a
legal e-mail address, Struts displays the corresponding error message,
errors.required or errors.email, respectively. In both cases,
Struts substitutes the text corresponding to inputForm.email into
the error message.

12.3 Using the Automatic Validation Framework 637

Listing 12.15 orders/WEB-INF/validation.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE form-validation PUBLIC
 "-//Apache Software Foundation//DTD Commons Validator Rules

Configuration 1.3.0//EN"
 "http://jakarta.apache.org/commons/dtds/validator_1_3_0.dtd">
<form-validation>
 <formset>
 <form name="orderFormBean">
 <field property="firstName"
 depends="required">
 <arg key="inputForm.firstName"/>
 </field>
 <field property="lastName"
 depends="required">
 <arg key="inputForm.lastName"/>
 </field>
 <field property="address"
 depends="required">
 <arg key="inputForm.address"/>
 </field>
 <field property="zipCode"
 depends="required,mask">
 <arg key="inputForm.zipCode"/>
 <var>
 <var-name>mask</var-name>
 <var-value>^\d{5}\d*$</var-value>
 </var>
 </field>
 <field property="creditCardNumber"
 depends="required,creditCard">
 <arg key="inputForm.creditCardNumber"/>
 </field>
 <field property="email"
 depends="required,email">
 <arg key="inputForm.email"/>
 </field>
 </form>
 </formset>
</form-validation>

Chapter 12 ■ The Struts Framework: Validating User Input638

Step 4: Have Form Bean Extend ValidatorForm
Listing 12.16 presents our form bean. Aside from extending ValidatorForm, the
bean simply has setter and getter methods for each of the six input fields of the
ordering form.

Listing 12.16
orders/WEB-INF/classes/coreservlets/
OrderFormBean.java

package coreservlets;

import org.apache.struts.validator.*;

public class OrderFormBean extends ValidatorForm {
 private String firstName = "";
 private String lastName = "";
 private String address = "";
 private String zipCode = "";
 private String creditCardNumber = "";
 private String email = "";

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getAddress() {
 return(address);
 }

 public void setAddress(String address) {
 this.address = address;
 }

12.3 Using the Automatic Validation Framework 639

Step 5: Put html:messages Tag in Input Page
Listing 12.17 presents our input page for the amazing Un-Divet tool, order-form.jsp.
We use the html:messages tag to display any error messages before the input
fields.

Step 6: Enable JavaScript Validation
To support client-side validation of the input fields, we add

<html:javascript formName="orderFormBean"/>

after the html:form tag in order-form.jsp. This tag adds all the necessary JavaScript
code to validate the six input fields based on various rules we defined in valida-
tion.xml.

In addition to the javascript tag, we add an onsubmit attribute to the begin-
ning html:form tag, as shown here:

 public String getZipCode() {
 return(zipCode);
 }

 public void setZipCode(String zipCode) {
 this.zipCode = zipCode;
 }

 public String getCreditCardNumber() {
 return(creditCardNumber);
 }

 public void setCreditCardNumber(String creditCardNumber) {
 this.creditCardNumber = creditCardNumber;
 }

 public String getEmail() {
 return(email);
 }

 public void setEmail(String email) {
 this.email = email;
 }
}

Listing 12.16
orders/WEB-INF/classes/coreservlets/
OrderFormBean.java (continued)

Chapter 12 ■ The Struts Framework: Validating User Input640

<html:form action="/actions/order"
 onsubmit="return validateOrderFormBean(this);">

This onsubmit option invokes JavaScript validation when the user submits the
form. If validation fails, the browser presents the user with a message dialog box
summarizing the errors; otherwise, the browser submits the request to the server.

Listing 12.17 orders/forms/order-form.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>No More Divets</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">No More Divets</H1>
Thanks for ordering the Fred Randall
Amazing Un-Divet for the bargain-basement
price of $199.95. To complete your
order, please fill out and submit the
following information.
<P>
<CENTER>
<%@ taglib uri="http://struts.apache.org/tags-html"
 prefix="html" %>
<%@ taglib uri="http://struts.apache.org/tags-bean"
 prefix="bean" %>

<html:messages id="msg" message="false">

 <bean:write name="msg"/>

</html:messages>

<html:form action="/actions/order"
 onsubmit="return validateOrderFormBean(this);">
 First name: <html:text property="firstName"/>

 Last name: <html:text property="lastName"/>

 Mailing address: <html:text property="address"/>

 ZIP Code: <html:text property="zipCode"/>

 Credit Card Number:
 <html:text property="creditCardNumber"/>

 Email address for confirmation:
 <html:text property="email"/>

 <html:submit value="Order Now!"/>
</html:form>
<html:javascript formName="orderFormBean"/>
</CENTER>
</BODY></HTML>

12.3 Using the Automatic Validation Framework 641

Results
Figure 12–11 shows the initial ordering form for the amazing Un-Divet tool. On sub-
mission, if the user fails to complete the order form correctly, client-side JavaScript
validation produces the message box shown in Figure 12–12.

If the user disables JavaScript on the browser, validation is still performed on the
server. If an error occurs, Struts sends the request back to the input page, where the
html:messages tag displays the error messages above the input fields, as in Figure 12–13.

To test that the server-side validation is working in this example, you need to dis-
able JavaScript in the browser. Next, we explain how to make this change in Internet
Explorer and Firefox.

• Disabling JavaScript in Internet Explorer. Go to Tools, Internet
Options. Select the Security tab and click the Custom Level button.
For the Setting, change Active Scripting to Disable. Then, click OK.

• Disabling JavaScript in Firefox. Go to Tools, Options. Select the Web
Features option and clear the Enable JavaScript checkbox. Click OK.

Finally, if the user completes all six input fields correctly, he or she sees the
order-confirmation.jsp page in Figure 12–14.

For the complete example code, go to the book’s source code archive at
http://volume2.coreservlets.com/.

Figure 12–11 Ordering form for the amazing Un-Divet tool.

http://volume2.coreservlets.com/

Chapter 12 ■ The Struts Framework: Validating User Input642

Figure 12–12 Results of submitting the order form with missing fields. Client-side
JavaScript validation checks the fields against validation rules and displays a warning
dialog box to the user.

Figure 12–13 Results of submitting the order form with JavaScript disabled in the browser.
In this case, Struts performs server-side validation. Any errors result in returning the request
back to the input page where the html:messages tag displays the error messages.

12.3 Using the Automatic Validation Framework 643

Figure 12–14 Result of a successful order request.

DEVELOPING
APPLICATIONS WITH

APACHE ANT

Topics in This Appendix

• Writing an Ant build file

• Understanding Ant targets and tasks

• Setting up an Ant directory structure

• Building a Web application for deployment

• Creating a WAR file

645

AppendixAppendix

A

Apache Ant is an open-source, cross-platform, development tool for building Java
applications. Through Ant, you can completely control the build process of your Web
application, from compiling source code to creating a WAR file.

In this appendix, we provide an introduction to Ant, where we focus on the build
tasks that developers use for almost every Web application. Specifically, we first show
you how to compile your application, then create a clean build of your application
(create directory structure, copy files, and compile files), and finally, create a WAR
file for deploying your application.

Each one of these common tasks is demonstrated through an example that
provides a complete Ant build file that you can easily modify for your Web appli-
cations. The example build files, like all code shown in this book, are found at
http://volume2.coreservlets.com/.

Once you’re familiar with the basics, for advanced Ant capabilities, you might
consider a book dedicated completely to Apache Ant. In addition, don’t overlook
the numerous examples found in the online documentation for Ant, located at
http://ant.apache.org/manual/. For an open-source product, the online documenta-
tion is among the best that we have found.

If using Tomcat 5.5, you can find a general-purpose Ant build file located at
http://tomcat.apache.org/tomcat-5.5-doc/appdev/sample/build.xml. This build file
provides enhanced support for deploying your Web application directly to
Tomcat through the Manager Web application (see http://tomcat.apache.org/

tomcat-5.5-doc/manager-howto.html).

http://volume2.coreservlets.com/
http://tomcat.apache.org/tomcat-5.5-doc/appdev/sample/build.xml
http://tomcat.apache.org/tomcat-5.5-doc/manager-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/manager-howto.html
http://ant.apache.org/manual/

Appendix ■ Developing Applications with Apache Ant646

Finally, after you are comfortable with Apache Ant, you may want to fur-
ther explore Apache Maven. Built on Ant, Maven is a complete framework for
managing large-scale software projects. For more information on Maven, see
http://maven.apache.org/.

A.1 Summarizing the Benefits of Ant

Ant is extremely popular with developers and is becoming the standard build tool for
projects and Web applications. Many vendors now directly support Ant in their
Java-based IDEs. For instance, jEdit, IBM Eclipse, Sun NetBeans, and JBuilder
Enterprise Edition all support Ant as a build tool. Following, we summarize the main
benefits of Ant.

• Built for Java. Ant is built from Java, for Java. Each command is
executed within the JVM, instead of in a new process, thus improving
performance. Also, Ant is a cross-platform tool, easily handling file
paths and directory structures in both UNIX and Windows
environments.

• Based on XML. An Ant project is completely written in XML. The
XML syntax is simple and easy to learn. Compared to the traditional
make files used with C and C++, Ant files are easier to read and
maintain.

• Easy to extend. Each task in Ant originates from a Java class.
Therefore, if needed, you can write your own custom tasks
incorporating the build functionality you need. Once you’ve written
the new task, you can add it to the Ant library.

A.2 Installing and Setting Up Ant

In the following list, we summarize the steps to install and configure Apache
Ant 1.7.0. For additional installation instructions, see Apache’s Web site at
http://ant.apache.org/.

1. Download the Ant implementation. Apache Ant 1.7.0 is bundled as
a ZIP file, apache-ant-1.7.0-bin.zip, located at http://ant.apache.org/

bindownload.cgi. If you prefer, TAR files are also available. Extract
the Ant files to a directory named apache-ant-1.7.0.

http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

A.2 Installing and Setting Up Ant 647

2. Set the environment variables. You should set your path to include
the Ant bin directory. In addition, you should set environment vari-
ables for ANT_HOME and JAVA_HOME (if not already set). The
ANT_HOME variable should list the base installation directory for Ant,
not the bin subdirectory. Similarly, the JAVA_HOME variable should
list the JDK installation directory, not the bin subdirectory. For exam-
ple, if you installed Ant in C:\apache-ant-17.0 and the JDK in
C:\j2sdk1.4.2_09, you might put the following lines in your
C:\autoexec.bat file:

set PATH=C:\apache-ant-1.7.0\bin;%PATH%
set ANT_HOME=C:\apache-ant-1.7.0
set JAVA_HOME=C:\j2sdk1.4.2_09

On Windows NT/2000/XP systems, instead of using the
autoexec.bat file, you could also right-click My Computer, select
Properties, then click the Advanced tab, then click the Environment
Variables button. Then, you would enter the ANT_HOME and
JAVA_HOME values, and click OK.

On UNIX systems (Solaris, Linux, etc.), if Ant is installed in /usr/
local/apache-ant-1.7.0, the SDK is installed in /usr/local/java1.4, and
you use the C shell, you would put the following into your .cshrc file:

setenv PATH /usr/local/apache-ant-1.7.0/bin:$PATH
setenv ANT_HOME /usr/local/apache-ant-1.7.0
setenv JAVA_HOME /usr/local/java1.4

3. Bookmark the Ant manual. The Ant manual is included with the
install download and is located in the ANT_HOME/docs/manual

directory (see index.html). The manual is also available online at
http://ant.apache.org/manual/. In addition, you should familiarize
yourself with the Ant Tasks menu option, available through the man-
ual’s Table of Contents. This portion of the manual provides a com-
plete summary of all the tasks available to build an Ant project.

To test that Ant is installed correctly, you can enter ant -version on the com-
mand line:

Prompt> ant -version
Apache Ant version 1.7.0 compiled on December 13 2006

http://ant.apache.org/manual/

Appendix ■ Developing Applications with Apache Ant648

A.3 Creating an Ant Project

Ant projects are written in XML. Because many developers are already familiar with
XML, Ant is fairly easy to learn. In addition, XML has a well-defined structure,
allowing you to easily organize the XML elements in your project.

An Ant project consists of targets and tasks, defined in a build file. Before examin-
ing the details of a build file, we first discuss the essential elements of an Ant project.

• Targets. An Ant project contains numerous targets to control the
build process. A target logically groups one or more tasks for a
particular step in the build process. For example, you might create a
target in your project to group all the tasks to compile the source files
in your application. You might create a target in your project, grouping
all the tasks needed to generate a WAR file. Through the command
line, you can ask Ant to run any one of the targets in the build file and
execute all the tasks contained in the target group.

• Core tasks. Ant provides numerous core tasks that you can assign to
your targets. These tasks execute a particular function available in the
Ant library, for example, <mkdir> to create a new directory or
<javac> to compile source code. Ant provides a rich library of core
tasks with the default install.

• Optional tasks. Typically, the core tasks provide most of the
functionality you need. However, on occasion you may require an
optional task. These rarely used tasks are not all standard with Ant and
can require installation of separate libraries or programs. Ant optional
tasks are beyond the scope of this book and are not covered further.

We next present the details of an Ant project and the associated build file.

Defining the Ant Project
The basic structure for an Ant project contains a project definition and project tar-
gets, as shown here:

<?xml version="1.0" ?>
<project name="MyProj" basedir="projDir" default="defaultTarget">
<description>My new Web application</description>

 <target name="targetName1">
 ...
 </target>
 <target name="targetName2">
 ...

A.3 Creating an Ant Project 649

 </target>
 ...
</project>

The Ant project is defined in a file known as the build file. This file must contain a
<project> root element, which functions as an XML container for declaring global
properties and targets for the project.

The <project> element defines three attributes:

• name. The name attribute is optional, but we recommend using it to
identify your project. In large Ant projects spanning multiple build
files, the name attribute helps identify the particular project file.

• basedir. The basedir attribute is optional and defines the
directory from which to make all path calculations. By default,
basedir is the directory in which the build file is located. For clarity,
developers often set the basedir attribute to . (period), explicitly
stating that the directory is the current directory for the build file.

• default. The default attribute is required. This attribute specifies
the default target to execute when running Ant on the build file.

When you declare an Ant <project> element, we strongly recommend that you
add a <description> subelement to describe the Web application and build file.

Declaring Global Properties
With Ant, you can define properties for the project. In essence, these properties are
constants that you can reference throughout the build file.

Ant supports six different approaches to define properties. For complete details,
see the Ant manual under Table of Contents, Ant Tasks, Core Tasks, then Property.
The property information is also available online at http://ant.apache.org/manual/

CoreTasks/property.html.
The following are a couple of property declarations:

<property name="web.application" value="boats"/>

<property name="src.dir" location="src/boats"/>

The first declaration creates a property named web.application with an
attribute value of boats. The second declaration creates a property named
src.dir but contains a location attribute with a value of src/boats. A location
refers to a file or directory resource. If a relative location is specified, then the full
path to the file or directory is calculated from the project’s basedir (as defined in
the project element). Ant supports either UNIX or Windows separators in a loca-
tion path.

http://ant.apache.org/manual/CoreTasks/property.html
http://ant.apache.org/manual/CoreTasks/property.html

Appendix ■ Developing Applications with Apache Ant650

To refer to the property value in the project file, simply place the property name
inside the sequence ${...}. You can refer to the property in any Ant element
attribute or task, as shown in the following two examples:

<mkdir dir="${src.dir}/WEB-INF/classes"/>
<echo>Web application name: ${web.application}</echo>

In both cases, the referenced property is resolved at runtime.
In addition to declaring your own properties, you can access any of the Java sys-

tem properties, using a similar notation as shown here:

<echo>User’s current working directory: ${user.dir}</echo>.

The standard Java system properties are summarized at http://java.sun.com/j2se/

1.4.2/docs/api/java/lang/System.html.

Writing Targets
Targets are a central concept to an Ant project. You use a target to group one or more
tasks in the build file and invoke the target from the command line. The format for
targets is shown here:

<target name="target-name1" description="Description of target.">
 <!-- Ant tasks. -->
...

</target>
<target name="target-name2" description="Description of target.">
 <!-- Ant tasks. -->
...

</target>

The required name attribute must be unique among all other targets in the
project. When running Ant on your build file, you simply state as a command-line
argument which target to invoke in the project.

For example, the following command prompts Ant to execute the target named
target-name in the default build file, build.xml:

Prompt> ant target-name

The description attribute in the <target> element is optional, but we
strongly recommend using this attribute to describe the tasks performed by the
target.

More important, as the project becomes large with numerous targets, you can
obtain a quick summary of the targets in the project by specifying the -project-
help option when running Ant. Requesting -projecthelp outputs the name of
each target, along with the description of the target.

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/System.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/System.html

A.3 Creating an Ant Project 651

Core Approach

Add a description for the project and for each target in the build
file. Then, by running ant -projecthelp, you can obtain a quick
summary of the project and available targets.

Assigning Tasks to Targets
You can assign multiple Ant tasks to each target in the project by placing the task
inside the container of the <target> element. When Ant executes the target, each
task is executed in the order in which it appears in the <target> element.

An example is shown here:

<target name="war" ...>
<mkdir dir="${dist.dir}"/>

 <tstamp/>
 <jar destfile="${dist.dir}/${war.file}">
 <fileset dir="${build.dir}">
 <include name="**/*"/>
 </fileset>
 ...
</jar>

</target>

This example war target contains three tasks: <mkdir>, <tstamp>, and <jar>.
The Ant library provides a rich set of core tasks for your targets, including

<mkdir> to make directories, <copy> to copy files, and <javac> to compile files.
Each library task has its own element name and set of attributes. For a complete list-
ing of all available core tasks, see the online documentation at http://ant.apache.org/
manual/ (from the Table of Contexts, select Ant Tasks, then Core Tasks).

Running an Ant Target
If you want Ant to execute one or more targets in your build file, specify the targets
on the command line when invoking the Ant engine. Simply state the targets in the
order of desired execution.

By default, Ant looks for the build file named build.xml. However, Ant also sup-
ports the -buildfile, -file, or -f command-line options to specify a different
build file to process.

For instance, the Ant command

Prompt> ant compile

http://ant.apache.org/manual/
http://ant.apache.org/manual/

Appendix ■ Developing Applications with Apache Ant652

executes the compile target in the default build file, build.xml, where the build file
is located in the working directory.

The next example,

Prompt> ant clean compile

lists two targets on the command line. Ant executes the tasks in the clean target first
and then proceeds to execute the tasks in the compile target next.

If you don’t state a target, as in

Prompt> ant

then Ant automatically invokes the default target as stated in the <project> ele-
ment.

If you didn’t use the default name for the build file, build.xml, you could specify
the build file name through the -f option.

Prompt> ant -f MyProject.xml compile

Next, we cover the more common Ant tasks you would use in your build file.

A.4 Reviewing Common Ant Tasks

The Ant library provides numerous core tasks that you can add to a target. The online
documentation for the core tasks is at http://ant.apache.org/manual/. From the
Table of Contents menu, select Ant Tasks and then Core Tasks.

Next we summarize the following core tasks common to most build files: <echo>,
<tstamp>, <mkdir>, <delete>, <copy>, and <javac>.

The echo Task
The <echo> task simply writes a message to System.out or a log file. The task
requires a message attribute unless the message is stated in the body of the <echo>
element (character section).

The following,

<echo message="Show me the money!"/>
<echo>Working directory: ${user.dir}</echo>

echo the messages shown here to the screen:

[echo] Show me the money!
[echo] Working directory: C:\ant-projects\boats

http://ant.apache.org/manual/

A.4 Reviewing Common Ant Tasks 653

The property, user.dir, is the standard Java system property for the user’s current
working directory.

The next example,

<echo file="log.txt">
Built by: ${user.name}
Java version: ${java.version}

</echo>

writes the following message to the log.txt file, located in the working directory:

Built by: brownlm
Java version: 1.4.2_09

Both user.name and java.version are also standard Java system properties.
By default, the log file is overwritten unless you specify an append attribute with

a value of true:

<echo file="log.txt" append="true"> ... </echo>

The tstamp Task
The <tstamp> task is handy for automatically setting the Ant time properties:
DSTAMP, TSTAMP, and TODAY. The DSTAMP property is in the format “yyyymmdd,”
TSTAMP is in the format “hhmm,” and TODAY is in the format “month day year.”

For instance, the following,

<tstamp/>
<echo message="DSTAMP is ${DSTAMP}"/>
<echo message="TSTAMP is ${TSTAMP}"/>
<echo message="TODAY is ${TODAY}"/>

results in

[echo] DSTAMP is 20061231
[echo] TSTAMP is 1517
[echo] TODAY is December 31 2006

In addition, you can use the <tstamp> task in combination with the <format>
subelement to create your own date and time formats.

This example creates a new property named timestamp in the ISO 8601 format
(see http://www.w3.org/TR/NOTE-datetime):

<tstamp>
 <format property="timestamp"
 pattern="yyyy-MM-dd'T'HH:mm:ss"/>
</tstamp>
<echo message="Time is ${timestamp}"/>

http://www.w3.org/TR/NOTE-datetime

Appendix ■ Developing Applications with Apache Ant654

That example produces the following Ant output:

[echo] Time is 2006-12-31T15:17:17

Also, developers commonly use the <tstamp> task to add a Built-On date to
JAR manifest files. For details, see Section A.9 (Example: Creating a Web Applica-
tion WAR File).

The mkdir Task
The <mkdir> task creates a new directory. The required (and only) attribute is dir,
which specifies the directory to create. The following is an example of the <mkdir>
task:

<mkdir dir="${build.dir}/WEB-INF/classes"/>

This task creates the ${bui ld.dir}/WEB-INF/classes directory, where the
build.dir property is first resolved before the directory is created. If any parent
directories are also missing, then Ant first creates the missing parent directories.

The delete Task
Another useful Ant task is <delete>, which can delete a file and a complete direc-
tory structure. The <delete> task supports multiple attributes. We summarize the
more common attributes here.

• file. The file attribute specifies which file to delete. Either the
file attribute or the dir attribute is required. The designated file
can include a relative path (from the basedir directory) or an
absolute path. If you want to specify multiple files or directories, use a
<fileset> subelement. We discuss filesets in the next subsection.

• dir. The dir attribute specifies which directory to delete. If
subdirectories exist, they are also deleted. Avoid ${base.dir} or .
for the dir value; otherwise, you will remove your complete Ant
project and corresponding build file.

• quiet. If you don’t want to receive a warning message when trying to
delete a missing file or directory, specify true for the quiet
attribute. The default value is false: display warning messages.

Core Note

For attributes that accept a boolean value, Ant treats all of the following
as a true state: true, yes, and on. All other values map to a false state.

A.4 Reviewing Common Ant Tasks 655

• includeEmptyDirs. The includeEmptyDirs attribute specifies
whether to delete empty directories when using filesets. The default
value is false: don’t delete empty directories.

• defaultexcludes. Ant automatically excludes certain files from a
fileset. This behavior prevents you from accidentally deleting your
source code management files, for example, CVS or vssver.scc files.
See http://ant.apache.org/manual/dirtasks.html#defaultexcludes for
the complete list of files automatically excluded from a fileset. If you
want to include source code management files in the fileset, specify an
attribute value of false.

A couple of examples follow:

<delete dir="${build.dir}"/>
<delete file="${dist.dir}/${app.name}.war" quiet="true"/>

The first example deletes the directory specified by the build.dir property, as
well as all subdirectories. The second example deletes the application’s WAR file,
located in the associated dist.dir directory.

The fileset Type
The <fileset> type is useful for indicating a group of files on which to operate.
The <fileset> type is supported by many Ant tasks, including <delete> and
<copy>.

You can select a single file through the file attribute. However, the more stan-
dard use is to state a directory through the dir attribute and then apply some rules
to filter the set of selected files in the directory.

In the following, we use the <fileset> type to clarify which files to delete with
the <delete> task:

<delete includeEmptyDirs="true" quiet="true">
<fileset dir="temp"/>

</delete>

<delete>
<fileset dir="${dist.dir}">

 <filename name="boats.war"/>
 </fileset>
</delete>

The first example deletes the temp directory and all subdirectories, even if empty.
If the temp directory does not exist, all warning messages are quietly suppressed.
The second example deletes the boats.war file from the directory determined by the
dist.dir property.

http://ant.apache.org/manual/dirtasks.html#defaultexcludes

Appendix ■ Developing Applications with Apache Ant656

With <include> and <exclude> subelements, you can control the grouping of
files in a fileset. For example, the following deletes all .class files from the
WEB-INF/classes directory and subdirectories.

<delete verbose="true">
 <fileset dir="WEB-INF/classes">
 <include name="**/*.class"/>
 </fileset>
</delete>

The next example deletes all but the *.jsp files from the html directory and
subdirectories:

<delete>
 <fileset dir="html">
 <include name="**/*"/>
 <exclude name="**/*.jsp"/>
 </fileset>
</delete>

In both examples, the ** acts as a wildcard to specify a search of all subdirectories
when selecting files for the fileset. Remember though, source control files are not
included in the fileset unless the defaultincludes attribute is set to false.

Core Note

To include all subdirectories when grouping files in a fileset, use ** in
the directory pattern.

For more information on the <delete> task, see the Ant manual (Table of
Contents, Ant Tasks, Core Tasks, then Delete) or the online documentation at
http://ant.apache.org/manual/CoreTasks/delete.html. For information on the
<fileset> type, see the manual (Table of Contents, Concepts and Types, FileSet)
or the online documentation at http://ant.apache.org/manual/CoreTypes/

fileset.html.

The copy Task
The <copy> task can copy either files or directories. The task supports numerous
attributes. In the following list, we summarize the more important <copy>
attributes.

http://ant.apache.org/manual/CoreTasks/delete.html
http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/CoreTypes/fileset.html

A.4 Reviewing Common Ant Tasks 657

• file. The file attribute specifies the file to copy. This attribute is
required unless you use a <fileset> subelement.

• tofile. The tofile attribute specifies the name of the copied file.
You must provide either a tofile or a todir attribute when using
the file attribute.

• todir. The todir attribute specifies the directory into which the file
should be copied. Typically, developers use the todir attribute in
combination with a <fileset> subelement, as in

<copy todir="${backup.dir}">
 <fileset dir="${src.dir}"/>
</copy>

• overwrite. Ant only copies source files that are newer than the
destination files. To overwrite existing files, regardless of their age,
specify a value of true for the overwrite attribute. By default, the
value is false: Newer destination files are not overwritten.

• preservelastmodified. If you want the copied files to have the
same time stamp as the original files, provide a preservelast-
modified attribute with a value of true. The default value is false:
Give the copied files a new time stamp representing the current time.

• includeEmptyDirs. The includeEmptyDirs attribute specifies
whether to copy empty directories when using filesets. The default
value is false: Do not copy empty directories.

• flatten. The flatten attribute specifies whether to preserve the
directory structure when copying a file. This attribute is helpful if you
want to remove the hierarchy directory structure. A value of true
removes the directory information from the file name. By default, the
value is false.

The following example copies the file Welcome.jsp to index.jsp:

<copy file="${web.dir}/Welcome.jsp"
 tofile="${catalina.home}/webapps/${app.name}/index.jsp"/>

Before determining the full directory paths, Ant first resolves the property values for
web.dir, catalina.home, and app.name.

The next example copies the MySQL JDBC drivers, bundled as a JAR file, to the
build/WEB-INF/lib directory:

<copy file="mysql-connector-java-3.1.10-bin.jar"
 todir="build/WEB-INF/lib"/>

Developers often use the <fileset> type with the <copy> task to select a
group of files or complete directories to copy. For this approach, you would use the

Appendix ■ Developing Applications with Apache Ant658

todir attribute of the <copy> task to specify the destination directory and then use
the <fileset> element to select files or directories to copy.

For example, the following <copy> task copies all the files in the directory
defined by the build.dir property (and subdirectories) to the application’s deploy-
ment directory in Tomcat:

<copy todir="${catalina.home}/webapps/${app.name}">
 <fileset dir="${build.dir}">
 <include name="**/*"/>
 </fileset>
</copy>

Again, Ant would first resolve the property values for catalina.home and
app.name before determining the full directory paths and copying the files.

For more information on the <copy> task, see the Ant manual, Table of
Contents, Ant Tasks, Core Tasks, then Copy, or the online documentation at
http://ant.apache.org/manual/CoreTasks/copy.html.

The javac Task
Probably the most popular Ant task is <javac>, which compiles your source code to
class files. The <javac> task is very robust and provides more than 30 attributes to
select files and to control compiler options; most of the attributes map closely to the
command-line options available in the SDK javac program.

In the following list, we cover the common <javac> attributes.

• srcdir. The srcdir attribute is the only required attribute. It
specifies the directory to search for compiling .java files. Ant scans
the srcdir and destdir directory recursively, compiling only those
source files with a later time stamp than their corresponding .class
files.

• classpath. The classpath attribute is optional and states where
to find the class files. If not stated, Ant uses the CLASSPATH set for
the operating environment. Instead of a classpath attribute,
authors often use the <classpath> subelement to better clarify
where to find the files. See the examples later in this section.

Core Note

If you don’t specify a classpath attribute or <classpath>
subelement for the <javac> task, then Ant uses the CLASSPATH as set
for the operating system environment.

http://ant.apache.org/manual/CoreTasks/copy.html

A.4 Reviewing Common Ant Tasks 659

• destdir. The destdir attribute is optional and specifies the
destination directory for the .class files (Ant preserves the package
hierarchy). If you don’t specify a destdir, then the .class files are
placed in the same directories as their corresponding .java files.

• debug. The debug attribute specifies whether to include debug
information in the .class files. The default value is false.

• verbose. The verbose attributes specifies whether to display
messages output by the compiler. The default value is false.

• listfiles. If you want Ant to list the .java files to compile,
specify true for the listfiles attribute. Otherwise, Ant won’t tell
you which files are compiled. The default is false: Don’t list files.

The following is a simple <javac> task demonstrating use of the srcdir and
destdir attributes:

<javac srcdir="${src.dir}"
destdir="${build.dir}/WEB-INF/classes" />

This task performs an in-process compilation of the .java files located in the
directory specified by the src.dir property. The task places the generated .class
files in the WEB-INF/classes subdirectory, relative to the directory specified by the
build.dir property.

For out-of-process compilation (execution of the SDK compiler externally as a
separate process), add a fork attribute value with a value of true (the default is
false).

Note that Ant scans the srcdir and destdir directories recursively, compiling
only those source files that have a different time stamp than their corresponding
.class files.

Ant automatically uses the CLASSPATH specified by your environment for the
<javac> task, but you can explicitly state the CLASSPATH through an attribute.

For example, the following specifies a CLASSPATH containing the servlet-api.jar
file (located in the directory specified by the lib.dir property):

<javac srcdir="${src.dir}"
 destdir="${build.dir}"
 debug="true"
 deprecation="true"
 verbose="true"
 classpath="${lib.dir}/servlet-api.jar"/>

Furthermore, the example sets attributes to generate debugging and deprecation
information. The verbose attribute is also true, forcing a detailed summary of the
compiler activity.

When specifying directory locations, don’t go on a file exploration by using ../.
Avoid constructs like the following:

Appendix ■ Developing Applications with Apache Ant660

// Poor directory path. Avoid!
classpath="../../../common/lib/servlet-api.jar"

Instead, move the JAR file to a common directory in the Ant project (see the rec-
ommended project directory structure in Section 3).

Ideally, you want all the files needed for your application located within the
project area. This approach makes it easier to maintain the project with a version
management system like Concurrent Versions System (CVS).

Core Approach

Place needed JAR files in the project directory structure. In this manner,
all the files for the project are centrally located in the same area.

The classpath Element
If your project requires multiple files on the CLASSPATH, you could use a <class-
path> subelement to specify the directories and files to include, as in

<javac srcdir="${src.dir}"
 destdir="${build.dir}"

<classpath>
 <pathelement location="common/lib/classes"/>
 <pathelement location="lib/mail.jar"/>
 </classpath>
</javac>

Some developers choose to define a separate <path> element in the build file
with an id attribute to identify the path group. Then, they create a classpath
property to reference the group through the path id.

This approach is more clearly understood from the folowing example:

<path id="project.classpath">
 <pathelement location="common/lib/classes"/>
 <pathelement location="lib/mail.jar"/>
</path>
<property name="classpath" refid="project.classpath"/>
...
<javac srcdir="${src.dir}"
 destdir="${build.dir}"
 <classpath>
 <pathelement path="${classpath}"/>
 </classpath>
</javac>

A.5 Example: Writing a Simple Ant Project 661

Numerous other <classpath> constructs are possible; Ant provides extensive
flexibility to select files and directories for establishing a CLASSPATH.

Regardless of your approach, explicitly provide the CLASSPATH information in
your Ant project. That way, you’re not relying on environment settings and your
project is more portable.

Core Approach

Always declare the CLASSPATH information in your Ant project—don’t
rely on the default system environment setting for the CLASSPATH. This
approach improves portability of your project to other platforms and
improves documentation.

For a complete summary of the attributes supported by the <javac> task and
other <classpath> constructs, go to the Ant manual, Table of Contents, Ant
Tasks, Core Tasks, and then select Javac. The information is also available online at
http://ant.apache.org/manual/CoreTasks/javac.html.

A.5 Example: Writing a
Simple Ant Project

For our first Ant example, we use a small application (an online boat shop) that con-
tains many aspects common to a Web site: JSP pages, images, servlets, and custom
tags. Figure A–1 shows the files and directory structure for the boats Web applica-
tion. The default page (index.jsp) for the boats application is shown in Figure A–2.

For Ant development, we provide this application bundled in a JAR file,
boats-ant.jar, at http://volume2.coreservlets.com/. This JAR file contains the
files and directory structure as recommended in Figure A–3 for our boats Web
application.

http://ant.apache.org/manual/CoreTasks/javac.html
http://volume2.coreservlets.com/

Appendix ■ Developing Applications with Apache Ant662

Figure A–1 Files and directory structure for boats Web application.

A.5 Example: Writing a Simple Ant Project 663

Figure A–2 Default page (index.jsp) for boats Web application.

Figure A–3 Recommended Ant directory structure for boats Web application.

Appendix ■ Developing Applications with Apache Ant664

In general, you should organize your Web application into five subdirectories: src,
lib, web, build, and dist. We explain the purpose of each directory in the following
list.

• src. The src directory contains all Java source files normally compiled
to the WEB-INF/classes directory. These files include your servlets,
beans, listeners, tag classes, utility classes, and so on.

• lib. The lib directory contains JAR files that are normally located on
your CLASSPATH and that are needed for compilation of your
application; for example, the servlet API and the JSP API, bundled in
servlet-api.jar and jsp-api.jar, respectively.

• web. The web directory contains all the files for your Web site, with
the exception of the source files normally associated with the WEB-INF/

classes subdirectory (the src directory contains the source files that
get compiled to the classes directory). Thus, the web directory
includes your HTML, JSP, and image files, along with all files
contained in your WEB-INF directory structure (web.xml, TLDs, etc.).

• build. The build directory is the target for a clean build of the
application before testing and deployment. The build directory
contains all files for your Web application, including the compiled
.class files.
Typically, you don’t manually create the build directory yourself.
Instead you rely on Ant tasks (<mkdir>, <copy>) to automatically
create the build directory structure and populate the directory with
the appropriate content from the src, lib, and web directories.

• dist. The dist directory is the target directory for building a WAR file
for distribution of your Web application.

In addition to the recommended directory structure, you should also use a source
code management system like CVS that tracks all the files in your src, lib, and web
directories.

The Ant build file for our application, boats1.xml, is given in Listing A.1. Place
this file in the top-level boats directory shown in Figure A–3 (the directory above
src).

The project contains two Ant targets, clean and compile. To see the available
targets in the build file, use the -projecthelp option when running Ant on
boats1.xml, as shown here:

// Run from boats directory.
Prompt> ant -projecthelp -f boats1.xml

Buildfile: boats1.xml
Web Application: Online Boat Shop
Main targets:

A.5 Example: Writing a Simple Ant Project 665

 clean Remove all .class files
 compile Compile files to WEB-INF/classes directory
Default target: compile

The first target, clean, removes all the .class files from the build area, where
the property, build.webinf.classes.dir, is determined at runtime and has a
value of build/WEB-INF/classes.

<target name="clean" ... >
 <delete quiet="true">
 <fileset dir="${build.webinf.classes.dir}">
 <filename name="**/*.class"/>
 </fileset>
 </delete>
</target>

We use a <fileset> type to select all the .class files in the directory structure
for deletion. The directory structure itself is not deleted.

The second target is compile. This target compiles all the .java files in the src
directory and places the resulting .class files in the build/WEB-INF/classes direc-
tory. If source files are located in subdirectories, then Ant compiles these files also.

<target name="compile" ... >
 <mkdir dir="${build.webinf.classes.dir}"/>
 <javac srcdir="${src.dir}"
 destdir="${build.webinf.classes.dir}"
 deprecation="${javac.deprecation}"
 listfiles="${javac.listfiles}">
 <classpath>
 <pathelement path="${classpath}"/>
 </classpath>
 </javac>
</target>

The target first defines a <mkdir> task to create the destination directory, build/
WEB-INF/classes. Then, the target defines a <javac> task to compile the source
files. Global properties provide values for the deprecation and listfiles
attributes.

Instead of a classpath attribute, a <classpath> element defines the CLASS-
PATH for the task. The <pathelement> references a path construct comprising the
servlet API, servlet-api.jar, which is located in the lib directory. See the property and
path definitions defined before the compile target in Listing A.1.

The compile target is the default target for this project. Thus, to compile the
project source code, enter the following Ant command:

Appendix ■ Developing Applications with Apache Ant666

Prompt> ant -f boats1.xml

Buildfile: boats1.xml

compile:
[mkdir] Created dir:

C:\ant-projects\boats\build\WEB-INF\classes
 [javac] Compiling 11 source files to

C:\ant-projects\boats\build\WEB-INF\classes

BUILD SUCCESSFUL
Total time: 3 seconds

The output shows that 11 source files were compiled and placed in the build area.
If you want information about which source files Ant compiled, change the global

property javac.listfiles to true. For a detailed explanation of the Ant pro-
cess, you can use the -verbose command-line option when running the target (see
-help for a complete list of available Ant command-line options).

As mentioned earlier, Ant examines the time stamp of the files, compiling only
those files modified since the previous compile. Thus, if you ran Ant a second time,
you would see the following output:

Prompt> ant -f boats1.xml

Buildfile: boats1.xml

compile:

BUILD SUCCESSFUL
Total time: 1 seconds

Because the .class files are already up to date, Ant doesn’t recompile the source
files.

Now, to ensure that all source files are recompiled, you would first execute the
clean target to remove all the existing .class files, then follow with the compile
target to regenerate the .class files.

To accomplish this result, simply list both targets, in the desired order of execu-
tion, on the command line, as shown here:

Prompt> ant -f boats1.xml clean compile

Buildfile: boats1.xml

clean:
 [delete] Deleting 11 files from

C:\ant-projects\boats\build\WEB-INF\classes

A.5 Example: Writing a Simple Ant Project 667

compile:
 [javac] Compiling 11 source files to
 C:\ant-projects\boats\build\WEB-INF\classes

BUILD SUCCESSFUL
Total time: 3 seconds

Listing A.1 ant-projects/boats/boats1.xml

<?xml version="1.0" ?>
<project name="Boats" default="compile" basedir=".">
 <description>Web Application: Online Boat Shop</description>
 <property name="javac.deprecation" value="true"/>
 <property name="javac.listfiles" value="false"/>

 <!-- Properties for project directories. -->
 <property name="src.dir" location="${basedir}/src"/>
 <property name="lib.dir" location="${basedir}/lib"/>
 <property name="build.dir" location="${basedir}/build"/>
 <property name="build.webinf.classes.dir"
 location="${build.dir}/WEB-INF/classes"/>

 <!-- The clean target removes all files from the
 WEB-INF/classes directory and subdirectories.
 -->

<target name="clean"
 description="Remove all .class files">
 <delete quiet="true">
 <fileset dir="${build.webinf.classes.dir}">
 <filename name="**/*.class"/>
 </fileset>
 </delete>
 </target>

 <!-- Create a path element declaring the directories/files
 to include on the CLASSPATH. Then, define a property to
 the path information.
 -->
 <path id="project.classpath">
 <pathelement location="${lib.dir}/servlet-api.jar"/>
 </path>
 <property name="classpath" refid="project.classpath"/>

Appendix ■ Developing Applications with Apache Ant668

A.6 Using Ant to Build
a Web Application

If all you ever did was compile your source code, you might not use Ant at all—you
would simply run the standard javac program. The real benefit of Ant is its ability
to nicely organize the build file to perform the various tasks common to preparing
and deploying your Web application.

For instance, you might set up your build file with tasks to delete old files, create
new directories, copy needed files, and compile source code. In some cases, one task
might have dependencies on another, for instance, creating a directory structure
before copying files.

With Ant, you can create dependencies between targets in the build file. Setting
up target dependencies has two main benefits:

• Process control. By setting up dependencies, you can guarantee that
certain tasks have completed in the build process before the
application proceeds with subsequent tasks. Each target can have a
specific task to perform in the build process.

 <!-- Default target that compiles all the source files
 to the build/WEB-INF/classes directory. Ant compiles
 only those .class files that have a different time stamp
 than their corresponding .java files. To compile all
 classes, first run the "clean" target to delete all the
 .class files, then run the "compile" target to recreate
 them.
 -->

<target name="compile"
 description="Compile files to WEB-INF/classes directory">
 <mkdir dir="${build.webinf.classes.dir}"/>
 <javac srcdir="${src.dir}"
 destdir="${build.webinf.classes.dir}"
 deprecation="${javac.deprecation}"
 listfiles="${javac.listfiles}">
 <classpath>
 <pathelement path="${classpath}"/>
 </classpath>
 </javac>
 </target>
</project>

Listing A.1 ant-projects/boats/boats1.xml (continued)

A.6 Using Ant to Build a Web Application 669

• Documentation. By dividing the tasks into separate, dependent
targets you can greatly improve the documentation and the life cycle
of the build process.

We next explain how to define dependencies between targets in a build file.

Ant Dependencies
When you write a new <target> in your build file, you can use the depends
attribute to specify another target on which your new target depends. If more than one
dependency is required, you can use a comma-separated list. The order of the targets
in the list determines the order of the dependencies and their order of execution.

A <target> with a depends attribute is shown here:

<target name="compile" depends="prepare"
 description="Compile files to WEB-INF/classes directory">
 // Ant tasks ...
</target>

In this example, the compile target depends on the prepare target. Thus, when

Prompt> ant compile

is run, the prepare target is executed first and then the compile target. The result
would be the same as if you entered the following command:

Prompt> ant prepare compile

Often, developers create in their project a build or an all target that has no
assigned tasks but simply defines dependencies on other targets that must complete
to create a clean build of the application.

An example is shown here:

<target name="build" depends="clean, copy, compile"/>

Through dependencies, this target first cleans the build area (deleting existing files),
then copies all necessary files for the Web application to the build area, and finally,
compiles the source files.

Core Approach

To create a clean build of the Web application, add a build target to
your Ant project to set up all the dependencies on other targets that
must complete.

Appendix ■ Developing Applications with Apache Ant670

In the next section, we present an example that uses this approach to build a Web
application before testing and deployment.

A.7 Example: Building
a Web Application

In this example, we present an Ant project to completely build the boats Web appli-
cation presented in Section A.5 (Example: Writing a Simple Ant Project).

The build file, boats2.xml, is given in Listing A.2. The build file contains five tar-
gets, briefly described here.

• clean. The clean target removes all files from the Web application’s
build directory.

• prepare. The prepare target creates the necessary directory
structure to compile and build the Web application.

• compile. The compile target compiles the application source files,
placing them in the build/WEB-INF/classes directory. The compile
target is dependent on the prepare target.

• copy. The copy target copies all the Web application files from the
web directory to the build directory. Unwanted files are not copied, for
example, *.bak files.

• build. The build target creates a clean build of the application,
with dependencies on the clean, copy, and compile targets.

The clean and compile targets are similar to the example presented earlier in
Section A.5 (Example: Writing a Simple Ant Project). Therefore, in the following, we
provide a detailed discussion only for the prepare, copy, and build targets.

The prepare Target
The prepare target sets up the necessary directory structure for the compile and
copy targets. The prepare target is shown here. Global properties for the directo-
ries are defined at the beginning of the build file, boats2.xml.

<target name="prepare" ... >
 <mkdir dir="${build.dir}" />
 <mkdir dir="${build.images.dir}"/>
 <mkdir dir="${build.webinf.dir}"/>
 <mkdir dir="${build.webinf.classes.dir}"/>
 <mkdir dir="${build.webinf.tlds.dir}"/>
</target>

A.7 Example: Building a Web Application 671

Specifically, the target uses the <mkdir> task to create the following directories:

build

build/images

build/WEB-INF

build/WEB-INF/classes

build/WEB-INF/tlds

Technically, the <mkdir> task creates any missing parent directories. Thus, we
could achieve the same directory result with only three of the <mkdir> tasks shown:

<mkdir dir="${build.images.dir}"/>
<mkdir dir="${build.webinf.classes.dir}"/>
<mkdir dir="${build.webinf.tlds.dir}"/>

However, it’s customary to use a separate <mkdir> task for each directory. Doing
so improves the maintenance and readability of the build file over the life span of the
project.

Core Approach

When setting up the build directory structure through an Ant target, add
a separate <mkdir> task for each directory, instead of relying on Ant to
automatically create the parent directory. This approach improves
maintenance and readability of the build file.

The copy Target
The <copy> target simply mirrors the complete directory structure and files from
the web directory to the build directory. The <copy> target is shown here:

<target name="copy" ... >
 <copy todir="${build.dir}"

preservelastmodified="yes"
overwrite="yes">

 <fileset dir="${web.dir}">
 <include name="**/*"/>
 <exclude name="**/*.bak"/>
 </fileset>
 </copy>
</target>

So as not to copy unwanted files, we use a <fileset> type to clarify the group of
files to copy to the destination directory.

Appendix ■ Developing Applications with Apache Ant672

The fileset contains one <include> element and one <exclude> element. The
<include> element,

<include name="**/*"/>

selects all files from the web directory and includes them in the set of files to copy.
Remember that the ** acts as a wildcard to specify that all subdirectories be exam-
ined when looking for files to add to the fileset.

The <exclude> element,

<exclude name="**/*.bak"/>

states that any .bak files found throughout the directory structure should not be
included in the set of files to copy.

After determining the final set of files, Ant copies them to the destination direc-
tory specified by the todir attribute. Again, only out-of-date files are copied unless
you specify true for the overwrite attribute in the <copy> task.

The build Target
The build target is a convenience target to logically bundle together all the targets
necessary to completely rebuild the Web application. You would use this target
before deploying your Web application to a test or production server.

The build target is shown here:

<target name="build" depends="clean, prepare, copy, compile" ... />

The target depends on the clean, prepare, copy, and compile targets. The
copy is performed before compile so that .class files accidentally located in the
src directory don’t overwrite newly compiled files.

Running the build target produces the following output. For the files to com-
pile successfully, place the two API files, servlet-api.jar and jsp-api.jar, in the
boats\lib directory.

Prompt> ant -f boats2.xml build

clean:
 [delete] Deleting directory C:\ant-projects\boats\build

prepare:
 [mkdir] Created dir: C:\ant-projects\boats\build
 [mkdir] Created dir: C:\ant-projects\boats\build\images
 [mkdir] Created dir: C:\ant-projects\boats\build\WEB-INF
 [mkdir] Created dir: C:\ant-projects\boats\build\WEB-INF\classes
 [mkdir] Created dir: C:\ant-projects\boats\build\WEB-INF\tlds

A.7 Example: Building a Web Application 673

copy:
 [copy] Copying 16 files to C:\ant-projects\boats\build

compile:
 [javac] Compiling 11 source files to
 C:\ant-projects\boats\build\WEB-INF\classes

build:

BUILD SUCCESSFUL
Total time: 4 seconds

After running the build target, you are ready to test the Web application. If test-
ing on the localhost, you could add another target to the project to copy the contents
of the build directory to your server’s Web application directory. Alternatively, you
could create a WAR file as described in the next section.

Listing A.2 ant-projects/boats/boats2.xml

<?xml version="1.0" ?>
<project name="Boats" default="compile" basedir=".">
 <description>Web Application: Online Boat Shop</description>
 <property name="javac.deprecation" value="true"/>
 <property name="javac.listfiles" value="false"/>
 <property name="app.name" value="boats"/>

 <!-- Properties for project directories. -->
 <property name="src.dir" location="${basedir}/src"/>
 <property name="lib.dir" location="${basedir}/lib"/>
 <property name="web.dir" location="${basedir}/web"/>
 <property name="build.dir" location="${basedir}/build"/>

 <!-- Properties for build directories. -->
 <property name="build.images.dir"
 location="${build.dir}/images"/>
 <property name="build.webinf.dir"
 location="${build.dir}/WEB-INF"/>
 <property name="build.webinf.classes.dir"
 location="${build.webinf.dir}/classes"/>
 <property name="build.webinf.tlds.dir"
 location="${build.webinf.dir}/tlds"/>

 <!-- The clean target removes the complete build directory
 structure.
 -->

Appendix ■ Developing Applications with Apache Ant674

 <target name="clean"
 description="Remove all files from build directory">
 <delete dir="${build.dir}" quiet="true"/>
 </target>

 <!-- The prepare target to create the complete directory
 structure for the Web application. In particular, it
 creates a build/WEB-INF/classes directory
 necessary for compiling the source files.
 -->
 <target name="prepare"
 description="Create directory structure to build application">
 <mkdir dir="${build.dir}" />
 <mkdir dir="${build.images.dir}" />
 <mkdir dir="${build.webinf.dir}"/>
 <mkdir dir="${build.webinf.classes.dir}"/>
 <mkdir dir="${build.webinf.tlds.dir}"/>
 </target>

 <!-- The copy target copies all Web application files from
 the web directory and subdirectories to the build
 directory. Don't copy backup files (.bak extension).
 -->
 <target name="copy"
 description="Copy Web files to build directory">
 <copy todir="${build.dir}" preservelastmodified="true"
 overwrite="true">
 <fileset dir="${web.dir}">
 <include name="**/*"/>
 <exclude name="**/*.bak"/>
 </fileset>
 </copy>
 </target>

 <!-- Create a path element declaring the directories/files
 to include on the CLASSPATH. Then, define a property to
 the path information.
 -->
 <path id="project.classpath">
 <pathelement location="${lib.dir}/servlet-api.jar"/>
 <pathelement location="${lib.dir}/jsp-api.jar"/>
 </path>
 <property name="classpath" refid="project.classpath"/>

Listing A.2 ant-projects/boats/boats2.xml (continued)

A.8 Using Ant to Create a WAR File 675

A.8 Using Ant to Create a WAR File

WAR (Web ARchive) files provide a convenient way of bundling Web applications in
a single file. A WAR file contains the complete directory structure and files for the
Web application.

Most J2EE containers allow you to auto-deploy a Web application through a WAR
file . For instance, w ith Tomcat 5.5, you just p lace the .war f i le in the
tomcat_install_dir/webapps directory, start the server, and Tomcat will deploy
(expand) the WAR file.

We use the <jar> task to create WAR files—simply place all the Web application
files in a build directory structure and then use the <jar> task to add the directory
structure and file to a WAR file.

 <!-- Default target that compiles all the source files
 to the build/WEB-INF/classes directory. Ant compiles
 only those .class files that have a different time stamp
 than their corresponding .java files. To compile all
 classes, first run the "clean" target to delete all the
 .class files, then run the "compile" target to recreate
 them.
 -->
 <target name="compile" depends="prepare"
 description="Compile files to WEB-INF/classes directory">
 <javac srcdir="${src.dir}"
 destdir="${build.webinf.classes.dir}"
 listfiles="${javac.listfiles}"
 deprecation="${javac.deprecation}">
 <classpath>
 <pathelement path="${classpath}"/>
 </classpath>
 </javac>
 </target>

 <!-- Target to completely create a clean build of the Web
 application. This target has dependencies on the clean,
 copy, and compile targets to ensure that the built
 application contains new copies of the latest files.
 -->
 <target name="build" depends="clean, prepare, copy, compile"
 description="Creates a clean, complete build of project"/>
</project>

Listing A.2 ant-projects/boats/boats2.xml (continued)

Appendix ■ Developing Applications with Apache Ant676

In addition to the Web application files, a WAR file must contain a manifest file,
META-INF/MAINFEST.MF. Typically, a manifest contains version information but can
also contain security information and define dependencies on libraries shared by the
application. As a convenience, the <jar> task supports the <manifest> task as a
subelement to help create a manifest file.

We next describe the <jar> and <manifest> tasks.

The jar Task
The <jar> task creates a JAR file in much the same manner as the SDK jar utility
found in the JAVA_HOME/bin directory. To create a WAR file, simply give the JAR file
a .war file name extension.

The following are the common attributes of the <jar> task.

• destfile. The destfile attribute specifies the location and name
of the JAR file to create. This attribute is required.

• basedir. The basedir attribute specifies the source directory of
the files to add to the JAR file. Alternatively, you can use the dir
attribute of a <fileset> subelement to specify the source directory.
See Section A.4 (Reviewing Common Ant Tasks) for details on the
fileset type.

• includes. The includes attribute specifies which files to include
in the archive. The value can be a comma- or space-separated list of
files. By default, the <jar> task includes all files from the basedir
directory.

• excludes. The excludes attribute specifies the files to exclude
from the archive. The value can be a comma- or space-separated list of
files. By default, Ant excludes only the code management files.

• manifest. The manifest attribute specifies the manifest file to add
in the archive. This attribute is optional, so if you don’t provide a
manifest, Ant adds a minimal META-INF/MANIFEST.MF file to the
archive. As an alternative to the manifest attribute, you can use a
<manifest> subelement to dynamically create the manifest file.

• update. The update attribute indicates whether to update an
existing JAR file or to create a new file. The default value is false:
Create a new JAR file.

• compress. The compress attributes specifies whether to compress
the archived files. The default value is true: Compress the files.
Because uncompressed JAR files are faster to read, you might set this
value to false for J2EE containers that don’t expand deployed WAR
files (i.e., containers that read the Web application files directly from
the WAR file). Tomcat 5.5 automatically expands the WAR file into a
directory structure.

A.8 Using Ant to Create a WAR File 677

• index. The index attribute specifies whether to create an index for
the JAR file. Creating an index speeds the loading of class files directly
from the archive. The default value is false: Do not create an index.

The following is a simple example of a <jar> task:

<jar destfile="${dist.dir}/myapp.war"
 basedir="${build.dir}"/>

This example creates a JAR file named myapp.war in the directory defined by the
dist.dir property. The task adds all files from the directory specified by the
build.dir property to the JAR file. All files located in subdirectories are also
added.

The next example demonstrates the <fileset> and <zipfileset> types to
explicitly select various files and directories to add to the JAR file:

<jar destfile="${dist.dir}/myapp.war"
compress="false" index="true">

 <fileset dir="${build.dir}">
 <include name="**/*"/>
 </fileset>
 <zipfileset dir="${src.dir}" prefix="WEB-INF/classes">
 <include name="**/*.java"/>
 <exclude name="**/*.bak"/>
 </zipfileset>
</jar>

The <fileset> type selects all files in the directory tree structure at the location
indicated by the build.dir property.

The <zipfileset> type operates similarly to the <fileset> type for selecting
files; however, you can logically map the selected files to a new directory through the
prefix attribute.

For instance, the <zipfileset> type in this example selects all the source files
from the directory specified by the src.dir property, excluding any possible
backup files ending in .bak. Because of the prefix attribute, when Ant adds the
files to the set, each file is prefixed with the WEB-INF/classes directory information.
This example effectively places the .java files in the same location as the .class
files in the Web application.

Normally, you wouldn’t place source code in WAR files that you deploy to produc-
tion servers. The reasoning is that you want to protect your proprietary source code
from potential hackers. Then again, a hacker good enough to compromise a server is
probably good enough to reverse engineer the .class files (see http://jode.source-
forge.net/ for a .class file decompiler).

http://jode.sourceforge.net/
http://jode.sourceforge.net/

Appendix ■ Developing Applications with Apache Ant678

The manifest Task
The <manifest> task dynamically creates a META-INF/MANIFEST.MF file. For a sim-
ple manifest file you might use this approach. However, for a complex manifest file,
it’s easier to first create a physical manifest file and then refer to the file through the
manifest attribute of the <jar> task.

In general, a manifest file contains a main section for security and configuration
information, along with optional sections to define various attributes for packages or
files in the JAR file.

Manifest entries consist of name–value pairs. Use the <attribute> subelement
to define the name–value pairs, as shown in this example:

<manifest file="MANIFEST.MF">
 <attribute name="Built-By" value="Larry Brown"/>
 <attribute name="Extension-List" value="javaMail"/>
 <attribute name="javaMail-Extension-Name" value="javax.mail"/>
 <attribute name="javaMail-Specification-Version"
 value="1.4"/>
 <attribute name="javaMail-Implementation-URL"
 value="http://www.coreservlets.com/javaMail.jar"/>
</manifest>

On our system, this example created a manifest file with the following contents:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 1.4.2_09-b05 (Sun Microsystems Inc.)
Built-By: Larry Brown
Extension-List: javaMail
javaMail-Extension-Name: javax.mail
javaMail-Specification-Version: 1.4
javaMail-Implementation-URL:

http://www.coreservlets.com/javaMail.jar

This manifest, in addition to naming who built the file, contains information on
the application’s dependency on the JavaMail 1.4 JAR file.

When WAR files are deployed, J2EE-compliant containers are required to detect
whether dependent library files are configured on the server and, if not, provide a
warning.

For more details on creating a manifest file, see the online documentation at
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html.

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html

A.9 Example: Creating a Web Application WAR File 679

A.9 Example: Creating a Web
Application WAR File

In this example, we use Ant to create a WAR file for deployment of our boats Web
application presented in Section A.5 (Example: Writing a Simple Ant Project). The
build file, boats3.xml, is given in Listing A.3 and extends the example presented in
Section A.7 (Example: Building a Web Application).

Next, we discuss the war target for the build file. The build file does contain
additional targets (not shown), but these targets are discussed in Section A.7
(Example: Building a Web Application). For a complete listing of the build file,
see the online code at http://volume2.coreservlets.com/.

The war Target
The build file contains a war target to create the application WAR file. The target per-
forms a sequence of steps to create the WAR file, as described in the following list.

• Create a local property for the WAR file name. Initially, the war
target defines a local property, war.file, for the name of the
WAR file.

<property name="war.file" value="${app.name}.war"/>

Ant builds the name from the app.name property by appending .war

to the application name. Thus, when executed, the war.file prop-
erty has a value of boats.war. This property is defined only within the
scope of the war target.

• Create the distribution directory. Next, the target defines a mkdir
task to create a distribution directory in which to place the WAR file.

<mkdir dir="${dist.dir}"/>

If the distribution directory and WAR file are already present, the
default behavior is to re-create the WAR file. For clarity, you could
add an update attribute with a value of false to the <jar> task.

• Define a timestamp property for the manifest file. After the
<mkdir> task, the target defines the <tstamp> task. This task
defines a property, named timestamp, that contains the date and
time of task execution, expressed in the ISO 8601 format.

<tstamp>
 <format property="timestamp"
 pattern="yyyy-MM-dd'T'HH:mm:ss"/>
</tstamp>

http://volume2.coreservlets.com/

Appendix ■ Developing Applications with Apache Ant680

The timestamp property is later used by the <manifest> task
when it adds a Built-On attribute.

• Use jar to create the distribution directory. Finally, the target
executes the <jar> task to create the WAR file and manifest file. The
<jar> task, shown here, creates the WAR file named dist/boats.war,
containing all the files from the build directory and subdirectories:

<jar destfile="${dist.dir}/${war.file}">
<!-- Include all files in the build directory and

subdirectories -->
 <fileset dir="${build.dir}">
 <include name="**/*"/>
 </fileset>

<!-- Dynamically create the META/MANIFEST.MF file -->
 <manifest>
 <attribute name="Built-By" value="Larry Brown"/>
 <attribute name="Built-On" value="${timestamp}"/>
 </manifest>
</jar>

The manifest file, dynamically created, contains only two attributes:
Built-By and Built-On. The Built-By attribute is set to Larry
Brown. The Built-On value is set to the date assigned to the
timestamp property.

The following shows the output from running the war target:

Prompt> ant -f boats3.xml war
Buildfile: boats3.xml

war:
[jar] Building jar: C:\ant-projects\boats\dist\boats.war

BUILD SUCCESSFUL
Total time: 2 seconds

Before you distribute your Web application, you should check that the WAR file
contains the directory structure and application files that you expect. You can list the
contents of the WAR file through the jar utility by using the tf options.

The following is the list of contents for the boats.war file:

Prompt> jar tf dist/boats.war

META-INF/
META-INF/MANIFEST.MF
MissingItem.jsp
SessionTest.jsp

A.9 Example: Creating a Web Application WAR File 681

ShowItem.jsp
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/coreservlets/
WEB-INF/classes/coreservlets/Count.class
WEB-INF/classes/coreservlets/CounterTag.class
WEB-INF/classes/coreservlets/ItemList.class
WEB-INF/classes/coreservlets/ItemTable.class
WEB-INF/classes/coreservlets/ServletUtilities.class
WEB-INF/classes/coreservlets/ShipTable.class
WEB-INF/classes/coreservlets/ShowItem.class
WEB-INF/classes/coreservlets/ShowPurchases.class
WEB-INF/classes/coreservlets/ShowSharedInfo.class
WEB-INF/classes/coreservlets/SimpleItem.class
WEB-INF/classes/coreservlets/TwoCookies.class
WEB-INF/tlds/
WEB-INF/tlds/count-taglib.tld
WEB-INF/web.xml
app-styles.css
carriers.jsp
images/
images/carrier.jpg
images/kittyhawk-638x435.jpg
images/kittyhawk.jpg
images/tanker.jpg
images/yacht.jpg
index.jsp
sucker.jsp
tankers.jsp
yachts.jsp

Listing A.3 ant-projects/boats/boats3.xml

<?xml version="1.0" ?>
<project name="Boats" default="compile" basedir=".">
 <description>Web Application: Online Boat Shop</description>
 <property name="javac.deprecation" value="true"/>
 <property name="javac.listfiles" value="false"/>
 <property name="app.name" value="boats"/>

 <!-- Properties for project directories. -->
 <property name="src.dir" location="${basedir}/src"/>
 <property name="web.dir" location="${basedir}/web"/>
 <property name="build.dir" location="${basedir}/build"/>
 <property name="dist.dir" location="${basedir}/dist"/>

Appendix ■ Developing Applications with Apache Ant682

 <!-- ... See online example at http://www.coreservlets.com/
for complete source code listing.

 ... -->

 <!-- Target to create a WAR file for deployment of the
 application. The manifest file is dynamically
 created.
 -->
 <target name="war"
 description="Create WAR file for deployment">
 <property name="war.file" value="${app.name}.war"/>
 <mkdir dir="${dist.dir}"/>
 <!-- Date for manifest file. -->
 <tstamp>
 <format property="timestamp"
 pattern="yyyy-MM-dd'T'HH:mm:ss"/>
 </tstamp>
 <!-- Build WAR file and manifest. -->
 <jar destfile="${dist.dir}/${war.file}"
 update="false" compress="true">
 <fileset dir="${build.dir}">
 <include name="**/*"/>
 </fileset>
 <manifest>
 <attribute name="Built-By" value="Larry Brown"/>
 <attribute name="Built-On" value="${timestamp}"/>
 </manifest>
 </jar>
 </target>
</project>

Listing A.3 ant-projects/boats/boats3.xml(continued)

683

IndexIndex

Numbers/Symbols
${bean.value} expression, 385, 391, 392
*. (asterisk and period combination), 44
* (asterisk)

for multimapping, 47–49
as the role-name, 118

* * wildcard, 656, 672
"/" value

for a cookie, 27
sending cookies to all URLs, 26

/ (slash), in url-pattern element, 44
. (period), setting the basedir attribute,

649
401 (Unauthorized) response code, 189
401 status code, 78
403 Forbidden HTTP error code, 114
404 error messages, 73, 74

A
absolute URLs

with c:redirect, 435
modifications required by, 133

abstract roles
in BASIC authentication, 145, 146
determining, 108
for form-based authentication, 108,

118–119

Accept-Language request header, 554
access restriction, 80–82, 105, 179
access time filter, 223–226
Account Status link, 132
account status page, linking to, 129, 132
action(s)

advantages of subdirectories, 524
defining in struts-config.xml, 459–461
understanding, 458–462
URL design strategies for, 523–524
writing, 461–462

action attribute
of the html:form tag, 509
with html:rewrite, 569

Action class
calling, 569
complete listing for, 467
defining, 457
defining to handle requests, 454, 485,

496–497, 516–517, 533
extending, 462, 467
manually validating input fields, 599
mapping incoming .do addresses,

459–460, 465, 471, 491, 507,
511–512, 529, 546

requirements for using in Struts, 458
validation in, 593, 594–607

Index684

action declarations, updating, 487, 492
action elements

attributes of, 459–460
defining in struts-config.xml, 465

action entries
adding to action-mappings, 459
mapping incoming .do addresses, 455, 507
in struts-config.xml, 454

action example, with an input attribute, 610
action mapping, 450, 452, 521, 535
Action objects

creating to handle requests, 473–474
creating to requests, 466–467
execute method of, 450
invoking the execute method, 482
processing requests with, 458–481
sharing results beans, 453
in Web application, 457

action URLs
designing with subdirectories, 523–524
designing without subdirectories, 523
similar path for all, 524

ActionErrors object
placing messages in, 611
use of, 610
in the validate method, 610

ActionForm argument, of execute, 462
ActionForm bean

creating, 493
validating input fields in, 607
validation in, 609–612, 618, 619

ActionForm class
extending, 487
validating input fields in, 612
writing, 487–488

ActionMapping argument, of execute, 462
ActionMessages

adding messages to, 598
adding parametric arguments to, 620
adding to the ActionErrors collection, 613
constructing, 610
placing in request scope, 596, 597, 599
referring to a message in the properties file, 611

ActionServlet, 452
add method, of ActionErrors, 610
addresses with subdirectories for URLs, 523
admin directory, protecting URLs in, 138–139
aliases

defining for roles, 181
for a form bean, 487

for a security role name, 83
allowed access, in declarative security, 180
Ant, 645

benefits of, 646
building a Web application, 668–669
creating a WAR file, 675–678
dependencies, 669
directory structure for boats Web application,

661, 663
extended by Maven, 16
installing and setting up, 646–647
integrating an IDE with, 17
overhead of learning, 16
using for deployment, 16–17
written in Java programming language, 16

Ant 1.7.0, bundled as a ZIP file, 646
Ant implementation, downloading, 646
Ant library, 651
Ant manual, bookmarking, 647
Ant projects

building, 670
creating, 648–652
defining, 648–650
writing a simple, 661–668

Ant targets, running, 651–652
Ant Tasks menu option, 647
Ant tasks, reviewing common, 652–661
ANT_HOME variable, 647
Apache Ant. See Ant
Apache Foundation, Ant developed by, 16
Apache Maven, 16–17, 646
Apache Struts framework. See Struts
apparent execution flow, through the Struts

framework, 450
app-blank Web application

copying and renaming, 14
downloading, 5, 10
web.xml file included with, 37
web.xml of, 7

app-blank.zip, downloading, 18
append attribute, with <echo>, 653
application event listeners, 93–94, 268
application scope, 453, 487
application variable, in a JSP page, 26
applications

internationalizing, 554
moving complex with a minimum of effort, 3

application-wide data, creating, 270
arg element, 631
arg0 attribute, 545

Index 685

argN attribute, providing, 553
arrays

forEach custom tag iterating over, 399
LoopTest, 400

asterisk and period combination (*.), 44
attackers, stealing network data in transit,

105, 179
attribute(s)

assigning to tags, 357–359
cleaning up, 297
of the forward element in struts-config.xml, 461

attribute changes, 322–323
attribute directive, 374
attribute element, nested elements, 358
attribute names

case sensitivity of, 359
comparing to stored names, 278, 306

<attribute> subelement, 678
attributeAdded method, 277, 322, 323

implementing, 306, 307
triggering, 277

attributeRemoved method, 322
of HttpSessionAttributeListener, 297–298
implementing, 306, 307
triggering, 277

attributeReplaced method, 322
implementing, 279, 306, 307
obtaining name and value of modified attribute,

279
triggering, 277

auth-constraint subelement, of security-
constraint, 38, 80, 81–82, 108, 115,
117–118, 146

authenticated users
allowing all to access a resource, 118
protecting from directly accessing the login

page, 112
authentication, 105, 179

example of form-based, 122–143
form-based, 106–121, 143–144
mechanisms, 78
users failing, 338

authentication method, designating, 78–79
auth-method subelement

of FORM, 107
of login-config, 78–79
value of FORM for, 110

authorization attempt
result of a failed, 191, 194
result of successful, 191, 194

Authorization header
populating, 78
remembering authenticated users, 144

auto-deploy directory. See also hot-deploy
directory

of Tomcat, 23
in WebLogic, 13

automatic validation, 594, 624
compared to manual, 624
example of, 633–643
steps in using, 627–633

automatic validator, turning on, 628

B
bad-address condition, 473, 477, 478, 501
bad-address3.jsp page, 498, 499
bad-address.jsp page, 475
bad-password condition, 473, 477, 478

execute method returning, 501
response for, 503

bad-password.jsp page, 475, 498, 499
banned sites, obtaining a list of, 227
BannedAccessFilter class, 227–228, 230–232
base64 encoding, 189, 190
BASE64Decoder class, 189, 190
basedir attribute

of <jar>, 676
in a <project> element, 649

BASIC authentication
for the auth-method subelement, 145
disadvantages of, 144
easier to set up, 144
example, 147–156
mechanism, 78
steps involved for, 189
telling the server you are using, 144, 145–146

BASIC security, 144–145
BEA WebLogic server, 13
bean(s)

accessing input fields from, 596
associating with forms, 450, 509
populating, 443
representing incoming form data, 490
system finding or instantiating, 518

bean properties
displaying in JSP pages, 488–489
for each incoming request parameter, 484
names staying in sync with request parameters,

504
outputting, 507

Index686

bean properties (continued)
updating and creating, 427
used for the form fields, 518
value of null or an empty string, 510

bean Struts tags, 562
bean tag library

importing, 490–491, 498
loading, 544

bean: tags, in Struts, 443
bean:message tag

bundle attribute, 543
common attributes for, 545
displaying title, head, and registration labels, 551
not filtering for special HTML characters, 553
outputting messages, 544–545
providing a value for the key attribute, 552
retrieving parameterized messages, 553
from the Struts tag library, 539
taking messages from the properties file, 550

BeanRegisterAction, complete code for, 497
bean:write tag

common attributes of, 489
compared to bean:message tag, 545
displaying bean properties, 457, 488–489, 498
displaying each message, 597
displaying registration information, 550–551
filtering special HTML characters, 489
in an output page, 600
outputting bean properties, 455, 490, 519, 522

bin directory, 647
boats Web application, files and directory

structure for, 661, 662
boats1.xml build file, 664, 667–668
boats2.xml build file, 670, 673–675
boats3.xml build file, 679, 681–682
Body section, of a Tiles layout, 570, 571
body sections, for a Web site, 572, 574–576
body-content element, value of scriptless for,

363
body-content subelement, of tag, 350–351
body-index.jsp section, 572
bookmarking Struts documentation, 447
browser(s)

cookies maintained by, 26
setting language preferences in, 554–555
supporting content encoding, 245

browser-based deployment wizard, in
WebLogic, 13

build directory, 664
build directory structure, 671

build files
in Ant projects, 649
example, 645
general-purpose, 645
specifying in Ant, 651–652

build target, in boats2.xml, 670, 672–675
Built-On date, 654
bundle attribute

for bean:message tag, 545
specifying in the bean:message tag, 543

business logic, handling exceptions, 437
business logic class, 494, 495–496
business plan protected page, available only to

executives, 154–156
ByteArrayOutputStream, 245–246

C
"c", as the prefix for JSTL core tag library, 421
CA, signing a server certificate as, 167
CA certificate

exporting, 170–174
importing as a Trusted Root Certificate, 170

case sensitivity, of XML elements, 36
catch tag, 437–438
catch.jsp page, 437–438
categories of users, storing the HttpSession

object, 188
Caucho Resin server, 13–14
c:catch tag, 437–438
c:choose tag, 425–427
centralized file-based configuration, of Struts,

442
centralized updates, 540
ceo role, declaring, 279
Certificate Import Wizard, 161, 162–163,

171–173
certificate information, viewing, 159, 161
certificate signing request. See CSR
certificate store, 172
certificate warning dialog box, 159
Certificates dialog box, 174
certtool script, in JSTK, 167
c:forEach tag, 422–424
c:forTokens tag, 422–424
ChangeCompanyName servlet, code listing,

283–284
ChangeDailySpecial servlet, 334, 336–337
ChangedCompanyNameListener class, 279,

280
ChangedDailySpecialListener, 334–335

Index 687

changes, centralized with Tiles Definitions, 583
character encoding

configuring, 93
used by JSP pages, 88

choose tag, 425–427
c:if tag, 424–425
c:import tag, 430–433, 434
class files

compiling source code to, 658
destination directory for, 659
placing in WEB-INF/classes, 6
reverse engineering, 677

ClassCastException, 412
classic tag API, 348
classic version, of Java-based custom tags,

371–372
CLASSPATH

automatically used by Ant, 659
of the properties file, 543
providing explicitly in an Ant project, 661
on UNIX/Linux compatible systems, 21
updating, 447
used by Ant for the operating environment, 658
in Windows, 20

classpath attribute, of <javac>, 658
classpath property, referencing, 660
<classpath> element, 660–661, 665
clean target

in boats1.xml, 665
in boats2.xml, 670
removing all existing .class files, 666

client certificates
security based on, 144
users authenticating, 120

client dependency, on the container, 101
CLIENT-CERT authentication mechanism, 79
CLIENT-CERT value, 120
clients, served by different machines, 95
client-side validation, 624–625
closing tag, with the body-content of empty,

356
clustered environment, developing for, 95–97
coin flips, simulating a random number of, 387
CoinBean.java class, 387
colors

collecting as an input form, 612
user selecting from an input page, 599

colorUtil.randomColor method, 299, 304
commented-out examples, removing from

struts-config.xml, 456

commonly used data
initializing, 271–277
monitoring changes to, 278–288

company home page, 290, 293, 296
company information page

with new custom tags, 290, 293–294
reworking to use custom tags, 296

company name
changing during execution of a Web application,

278
updating the former, 278

company name listeners, packaging, 290–296
CompanyNameTag code listing, 290
compile target

in boats1.xml, 665
in boats2.xml, 670
regenerating .class files, 666

compress attributes, of <jar>, 676
compression filter, 245–251
CompressionFilter class, 245, 247–249
conditional operations, 425
CONFIDENTIAL value

mandating the use of SSL, 82
for transport-guarantee, 119

configuration files
making changes in, 540
used in Tiles Definitions, 583

confirmation page, for registration, 522
confirm-registration.jsp page, 475, 498, 500,

550–551
ContactFormBean, 513–515

Action class using, 511
code listing, 530–532

container-managed security, 82
containers. See server(s)
content, 430
Content-Encoding response header, 245
Context element, 12
Context entry, adding to tomcat_dir/conf/

server.xml, 11
context sharing, enabling on Tomcat, 27
contextDestroyed method, 270, 271
contextInitialized method

implementing, 270, 271
of ServletContextListener, 96

context-param element, 38, 63–64, 269, 271
ContextReporter listener, 94
control flow. See flow of control
controller section, supporting an existing

application, 628

Index688

cookies, 26
accessing in Struts, 472
disabling, 305
drawback to data sharing with, 26
sharing information among Web applications, 25
tracking by reserved session-level, 78

<copy> target, of boats2.xml, 670, 671–672
<copy> task, in Ant, 656–658
core library of JSTL, 419
core tasks

assigning to Ant targets, 648
online documentation for, 652
for targets provided by the Ant library, 651

c:otherwise tag, 425–427
count attribute, of a for loop tag, 387
counters, incrementing, 298
c:out tag, 421–422

advantages of, 421
as an alternative to JSP EL, 421
displaying bean properties, 488

c:param tag, 433–435
c:redirect tag, 435–436
credit card number

protecting in transit, 137
validating, 632, 636

creditCard validation rule, 632, 636
c:remove tag, 428–430
crossContext attribute, in Tomcat, 27
cross-site scripting (CSS) attacks, 421

information on, 545
removing the risk of, 620

csajsp-taglib-adv.tld file, 381, 383, 387, 390,
393, 397, 400, 402–403, 407, 408–409,
413, 416

csajsp-taglib.tld, 359, 360, 364, 365–366, 369
c:set tag, 427–430
CSR (certificate signing request)

generating, 168–169
submitting to commercial CAs, 167

c:url tag, 433–435
currentSessionCount, 298
custom error messages, parameterizing, 620
custom table-formatting tag, listing records, 393
custom tags. See also tag(s)

conditionally outputting tag bodies, 368
creating complex presentation logic, 348
creating using tag files, 371
handling nested, 410–412

custom URLs, 44–50
c:when tag, 425–427

D
daily special

order count, resetting, 334–339
tracking orders for, 326

daily special servlet, 229
DailySpecialRegistrar listener, 326–328
DailySpecialWatcher listener, 326, 328–330
data

initializing commonly used, 271–277
monitoring changes to commonly used, 278–288
sharing among Web applications, 25–32
storing in an easily accessible location, 270

database
closing connections, 270
cookie value as a key into, 26

DDE.jsp, code listing, 76
debug attribute, of <javac>, 659
debug tag

improved, 407–410
limitation to, 404

debug.jsp page, 368, 369–371, 407
DebugTag class, 368–369, 407
declarative security, 106

advantages to the developer, 188
levels of access for each resource, 180

decodeBuffer method, 189
default attribute, in an Ant <project> element,

649
default files, accessing in WEB-INF/web.xml

file, 6
default properties file, 554
default target, in the <project> element in

Ant, 652
default URLs

initialization parameters not available, 57
turning off, 52

defaultexcludes attribute, of <delete>, 655
definition attribute, in tiles:insert, 586
definition element, in tiles-def.xml, 585
definition file, 582
Delete Account page, accessible only to

administrator role, 138
<delete> task

<fileset> clarifying which files to delete, 655
in Ant, 654–655
more information on, 656

delims attribute, of c:forTokens, 422
denied access, in declarative security, 180
dependencies, among targets, 669
depends attribute, of <target>, 669

Index 689

deployers
customizing filters, 222
customizing the behavior of servlets or JSP

pages, 221
deployment descriptor

purpose of, 35–36
for a Web application, 123–127, 149–151

deployment descriptor file. See web.xml file
derived layout definitions, specifying, 588
derived layouts, creating, 585–586
description attribute, in the <target> element,

650
description element, 39, 85, 97
description subelement

of filter, 207
of tag, 350

<description> subelement, in an Ant <project>
element, 649

deserialization, of session objects, 268
design strategies, for action URLs, 523–524
destdir attribute, of <javac>, 659
destfile attribute, of <jar>, 676
developers, customizing servlets or JSP pages,

221
development directory, keeping separate from

deployment, 9
development directory structure, 10
development environments

explicit support for servlets and JSP, 84
servlet- and JSP-savvy, 16

DIGEST authentication, 78, 189
DIGEST security, 144
dir attribute

of <delete>, 654
of <fileset>, 655, 676
of <mkdir>, 654

direct access, restricting to the login page,
112–114

directories
copying in Ant, 656–658
creating manually, 10

directory mappings, preferred over extension
mappings, 50

directory structure
for the compile and copy targets, 670
creating for Web applications, 14

dispatcher deployment descriptor element,
251

dispatcher elements
specifying, 254

values of, 252–253
dispatcher subelement, of filter-mapping, 208
display-name element, 39, 84–85
display-name subelement

of filter, 207
of security-constraint, 80, 82, 115, 118, 146

dist directory, 664
dist/boats.war file, 680
distributable element, 39, 97
distribution directory, creating for a WAR file,

679
.do addresses, mapping incoming, 455, 459–

460, 465, 471, 491, 507, 511–512, 529,
546

.do extension, 452

.do suffix, 509
docBase attribute, of Context, 12
DOCTYPE declaration, 37
Document Type Definition (DTD), 37
documentation

improving by dividing tasks, 669
JSTL tag library, 420
online for Apache Ant, 645
of Struts, 444–445

doFilter method
of an associated filter, 68–69
executing, 205
filtering behavior in, 204, 206, 210, 218, 223,

228, 254
passing response wrapper to, 234

doGet method, 316
Domain Name System (DNS) servers,

preventing attackers from hacking, 157
domain names, banning from your site, 227
doTag method, 349

of DebugTag.java, 368
generating <TABLE> and start tags,

364
placing an attribute of tag body scope, 399

DSTAMP property, in Ant, 653
DTD (Document Type Definition), 37
DumbDeveloperException class, 75–76
dynamic keys, 552
dynamic values, assigning to tag attributes,

385–387

E
e-boats application, 570–581

file structure of, 578
main pages for, 577–578

Index690

e-boats application (continued)
results for, 579–582
reworking with Tiles Definitions, 586–590

<echo> task, in Ant, 652–653
EchoServer program, 165
editor, setting CLASSPATH in, 447
EJB reference, 98
ejb-link element, path name specified, 98–99
ejb-local-ref element, 40, 99
ejb-ref element, 40, 98–99
EL. See JSP EL
el-ignored subelement, of jsp-property-group,

87–88
else tag, 412
ElseTag class, 412, 414–415
e-mail address, registration form with an

illegal, 502
email validation rule

validating against, 636
in validation-rules.xml, 632

empty auth-constraint element, 118
empty value, for body-content, 350
encodeURL method, 433
encoding subelement, of locale-encoding-

mapping elements, 93
encryption algorithm, 196
encryption key, 196
end users, customizing servlets or JSP pages,

221
English, internationalizing for, 555–557
enterprise bean, local home interface of, 99
enterprise-level Web applications, clustered

environment for, 95
env-entry element, 39, 98
env-entry-type element, 98
environment entry, declaring a Web

application’s, 98
environment variables, setting for Apache Ant,

647
error(s), designating pages to handle, 72–77
error code, mapping back to the input form, 596
error conditions, mapping, 525, 527
error messages

adding prompts or messages to substitute into, 628
adding to ActionMessages, 596–597
creating and displaying, 527–528
customizing, 519
determining arguments for, 631
determining names of, 631
passing to JSP pages, 516

storing, 521
storing and displaying, 525

ERROR value, of dispatcher, 252–253
error-code element, 73–74
error-code subelement, 72
error-page element, 38, 72, 138, 152
escapeXml attribute, of c:out, 421
event listener class, 39
event listeners

declaring, 269
packaging with tag libraries, 288–289
registering, 93
responding to Web application life-cycle events,

268
steps for using, 268–269

events deployment descriptor, 339–345
exact-match patterns, 45–47
Examine Certificate button, in Firefox, 159
/examples, not using in Tomcat, 12
exception class, 75
exceptions

catching explicitly in code, 75
handling with business logic, 437

exception-type element, 75–77
exception-type subelement, of error-page, 72
<exclude> element, in fileset, 672
<exclude> subelement, of <fileset>, 656
excludes attribute, of <jar>, 676
execute method

of the Action object, 453–454, 482
forwarding response back to the input page, 525
overriding, 462, 467
of SignupAction2, 535
using form beans to access incoming request

parameters, 472
execution flow, through the Struts framework,

450
executive role, logging in as a user in, 154–155
expression language functions, 404–406
extends attribute, in the definition element, 585
extension mappings, overriding standard, 85
extension subelement, of mime-mapping, 85
external resource, used with a resource

factory, 98

F
false, specifying for the message attribute, 611
fields, defining in validation.xml, 630–632
file attribute

of <copy>, 657

Index 691

of <delete>, 654
of <fileset>, 655

file types, locations for various, 5–8
file-based configuration, of Struts, 442
files, copying in Ant, 656–658
<fileset> element, selecting files or directories

to copy, 658
<fileset> subelement, specifying multiple files

or directories, 654
<fileset> type, 655–656

clarifying files to copy, 671
explicitly selecting files and directories, 677
information on, 656
selecting all .class files, 665
using with <copy> task, 657–658

filter(s), 203
accessing servlet context from, 217
creating basic, 204
declaring, 68–71
intercepting requests, 69
options for, 203
registering with servlets and JSP pages, 204,

207–208
wrapping response object, 69

filter attribute, of bean:write, 489
filter element, 38, 70

registering a filtering object, 207
subelements of, 207

filter initialization parameters, 221–222
Filter interface

class implementing, 210, 218, 223, 227
creating a class implementing, 204, 205–206
doFilter method of, 206

FilterChain object
calling doFilter method of, 204, 206, 210, 218,

223, 226
conditional call to the doFilter method of, 228
of doFilter, 205

filter-class subelement, of filter, 207
FilterConfig class

getInitParameter method of, 222
getServletContext method, 217

FilterConfig object
storing, 217
using init to store, 205–206

filterhtml custom tag, 381
filtering, applying to actions, 524
filter-mapping element, 38, 70

associating the filter with the daily special
servlet, 210

placing the dispatcher element inside, 251
specifying URLs for filtering, 207
subelements of, 208
url-pattern, 223
using a servlet-name of LongServlet, 246

filter-name subelement
of filter, 207
of filter-mapping, 208

financial plan protected page, 152–154
findAncestorWithClass method, 411, 413
Firefox

certificate information presented on, 160
changing the language setting, 555
disabling cookies, 305
disabling JavaScript in, 641
new certificate page for, 201

flatten attribute, of <copy>, 657
flexibility, increased with Tiles, 558
flow of control

implementing for Struts, 450–454
simplified Struts, 463, 464
in the Struts framework, 454–458, 504, 525
Struts updates for bean use, 482–483

font sizes, collecting on an input form, 612
fonts, user selecting, 599
footer, specifying for an entire group of JSP

pages, 89
footer attribute, of html:messages, 598
Footer section, of a Tiles layout, 570, 571
for loop

c:forEach as a counter-based, 422
iterating through an array of strings, 398

for loop tag, 387
forbidden.jsp page, 138, 139
forchoose.jsp page, 426–427
forEach tag, 399, 422–424
ForEachTag class, 400, 401–402
forif.jsp page, 424–425
for.jsp page, 422–424
fork attribute value, 659
form(s)

associating beans with, 509
declaring using html:form, 509
example of prepopulating, 511–522
improving filtering and security settings for, 524
prepopulating, 510–511
redisplaying, 443, 525–528
redisplaying example, 528–537
simplifying organization and editing of, 524
submitting data to a URL, 452

Index692

form and results beans, example using,
490–503

FORM authentication mechanism, 78
form bean(s), 481

automatically populated with request data, 490
critical role in the Struts framework, 486
declaring, 455, 461, 484, 486–487, 491, 507,

512–513, 529–530
defining, 454, 456, 472, 484, 486–487, 493–494,

508, 513–515, 530–532, 548–549
extending ActionForm class, 490
extending ValidatorForm, 627, 632, 638–639
handling request parameters with, 481–503
messages held in, 528
populating, 443
representing input data, 485
understanding, 486–488
validating in, 593, 607–623
warning message stored inside, 533
writing, 487–488

form bean template, supporting error
messages, 527, 528

form element, in validation.xml, 629–630
form field validation, in Struts, 443–444
form field values, derived from bean

properties, 534
form fields

bean properties used for, 518
validating, 593

form submissions, protecting, 116
<format> subelement, 653
FormatFormBean

code listing, 599, 601–602, 613–615
modified for parameterized messages, 621–622
with a validate method, 613

form-based authentication, 106–121, 143–144
creating your own, 188
disadvantages, 144
example of, 122–143
not guaranteed for session tracking, 107

form-based security, 107–108
form-bean entry

adding to the form-beans element, 486
declaring with name and type attributes, 547
in the form-beans section, 484
in struts-config.xml, 454, 491

form-beans element, 486
form-beans section, of struts-config.xml, 506
FormerCompanyNameTag code listing, 291
form-login-config subelement, 78, 79, 110

formset element, in validation.xml, 629
form-validation element, in validation.xml, 629
ForTag.java class, 387, 388
forTokens tag, 422–424
forward attributes, common, 461
forward elements

attributes of, 461
defining in struts-config.xml, 596
mapping return conditions, 453
in struts-config.xml, 604

forward entries
adding to the action element in struts-config.xml,

460
corresponding to missing data, 527
mapping return conditions to JSP pages, 455,

507
replacing with a single entry in global-forwards,

479
in struts-config.xml, 454, 458, 465, 471

forward method, of the RequestDispatcher
class, 435

FORWARD value, of dispatcher, 252
fragmentation, in the Struts community, 445
French, internationalizing for, 555–557
function-class element, 406
function-signature element, 406

G
GET request

never using with password fields, 111
in WebClient, 164

getAttributeName method, 358
getInitParameter method

of FilterConfig, 206, 207
of ServletConfig, 63
of ServletContext, 63

getJspBody() .invoke(null) method, 362, 368,
380

getName method, of the
ServletRequestAttributeEvent, 323

getOutputStream method, overriding, 234, 235
getParent method, 411, 413
getRecentRecords method, 400
getRemoteHost method, of ServletRequest,

228
getRemoteUser method

in HttpServletRequest, 181
returning username of the currently logged-in

user, 113
getRequestRecords method, 316

Index 693

getScheme method, of ServletRequest
interface, 195

getServletContext method
of a servlet, 26
of ServletRequestEvent class, 314

getServletRequest method, 314
gettable bean properties, 488, 493
getter methods

calling on UserFormBean, 496
for results beans, 494

getUserPrincipal method, in
HttpServletRequest, 181

getWriter, overriding, 234
global properties, declaring, 649–650
global-forwards section, 479, 512
GZIPOutputStream, 246
gzipped content, browsers handling, 245

H
handler element, 101
handler-class element, 101
handler-name element, 101
hardware load balancer, 95
header attribute, of html:messages, 598
Header section, of a Tiles layout, 570, 571
heading element, defining a tag for, 364
heading tag, using tag files, 376–377
heading-1.jsp, 364, 366–367
headings-2.jsp file, 376–377
HeadingTag, 364–365
heading.tag file, 376
home page, for a Web application, 122–123,

147–148
hot-deploy directory, 10
hot-deployment, 10
hot-dot-com.com, 122
HTML

generated from invoking/ustm, 92
importing a snippet of, 431
in template files, 561

HTML code, custom tag filtering out, 381
HTML forms

creating for user input, 455
declarative security using, 106

HTML header elements, not repeating in
layout pieces, 562

HTML page
forwarding, 253
requesting a JSP page, 299, 303

HTML snippets, importing, 431

html Struts tags, 562
html: tags, building the Struts input form,

450
HTML tags, provided by Struts, 443
HtmlFilterTag tag handler class, 381–382
html:form element

associating a form with a bean, 455
building a FORM element, 521, 535
building an HTML form, 534
declaring a form, 508, 509
for the main form, 510
results yielded by, 509

html:form tag, 508, 518
adding an onsubmit attribute, 633
building form elements, 599
creating a form, 452

html:javascript tag, adding to JSP page, 633
html:messages tag

common attributes of, 597–598
displaying error messages, 599, 641
in input form, 609, 611–612
on the input page, 627
outputting error messages in input form, 596,

597–598
html:rewrite tag, 569, 572
html:tags

as key to the redisplay process, 525
prepopulating forms, 510
using, 508–510

html:text element
building an HTML form, 534
declaring input fields of a form, 508
declaring the input fields of a form, 510
gathering user data, 455

html:text tag, 508
building form elements, 599
building input elements, 518
creating a form, 452
for text fields, 511

HTTP authentication
native, 189
standard, 78

HTTP BASIC security, 144–145
HTTP error codes, 72
HTTP request headers, accessing in Struts,

472
HTTP version, selecting for WebClient, 165
http-method element, 80
HTTPS (HTTP over SSL), servers using, 79
https connections, 120

Index694

HttpServletRequest object
hybrid security methods provided in, 181
special-purpose attributes of, 72
in Struts, 472

HttpServletResponseWrapper class, 234
HttpSession object(s)

invalidating, 112
objects stored in implementing Serializable, 96
session tracking data stored in per-user, 297
session tracking provided, 433
sharing among machines in a cluster, 95
storing minimal information in, 96

HttpSessionAttributeListener interface, 297,
306, 307, 326

HttpSessionBindingEvent class
as an argument, 306
methods of, 306

HttpSessionEvent, getSession method, 297
HttpSessionListener interface, 297–298
https://localhost/, accessing, 159

I
I18N application, creating with Struts, 554
icon element, 39, 84
icon subelement, of filter, 207
id attribute, of html:messages, 597, 598
IDE

setting CLASSPATH in, 447
using in combination with Ant, 17

IDE-specific deployment features, 16
if statement, getJspBody() .invoke(null)

invocation, 368
if tag, 412, 424–425
IfTag class, 412, 413
if-test.jsp file, 413, 416–417
if-then-else tag, 412–417
illegal password, registration form with, 503
IllegalArgumentException, container

throwing, 96
images, using on multiple pages, 570
/images directory, 570
import statements, adding Struts-specific, 462,

466–467
import tag, 430–433, 434
import.jsp page, 431, 432, 433
include directive

at the beginning of each JSP page, 89
using static inclusion, 430

INCLUDE value, of dispatcher, 252

<include> element, in fileset, 672
<include> subelement, of <fileset>, 656
include-coda subelement, of jsp-property-

group, 89
includeEmptyDirs attribute

of <copy>, 657
of <delete>, 655

include-prelude subelement, of jsp-property-
group, 89

includes attribute, of <jar>, 676
incoming user data, form beans representing,

486
index attribute, of <jar>, 677
inheritance, Tiles Definitions as a loose form

of, 583
init method

executing for filters, 205–206
illegal in a JSP declaration, 61

initial registration page, 521
InitialCompanyNameListener, 271, 272–274

augmented, 290, 294–295
initialization, in JSP, 57
initialization parameters

assigning to servlets, 56–60
common gotchas, 57
defining, 222
missing result, 222
parsing, 222
placing slow-loading, 68
providing for commonly-used data, 272
providing for event listeners, 269, 271
reading, 222
in servlets accessed by default URLs, 57
supplying application-wide, 63–64

InitPage.jsp, 61, 62
init-param element, 56, 101
init-param subelement

defining startTime and endTime, 223
of filter, 207, 222, 228

InitServlet
accessing with a custom URL, 60
accessing with the default URL, 60
using init method, 58–59

input attribute
of the action element, 460
of action in struts-config.xml, 609, 612
adding to the action element in

struts-config.xml, 613
input data, validation of, 593, 625

Index 695

input elements, declaring, 511
input fields

declaring using html:text, 510
prepopulating, 511
setting up validation rules, 630–632
specifying validation rules for, 636
targeting messages for particular, 598
validating in ActionForm, 612

input form(s)
advantages of subdirectories, 524
code listing for, 599, 600–601
collecting font sizes and colors, 599
creating, 457, 474–475, 507
html:messages in, 611–612
listing of complete, 518–519
listing the address of, 627
mapping error condition back to, 527
placing, 468
prepopulating and redisplaying, 504–537
redisplaying with correctly entered values and

missing values flagged, 528
in Struts, 450
using the form bean, 513

input page
for the amazing Un-Divet tool, 639
for chooseFormat2, 613, 616–617
redisplayed, 525
redisplayed with error messages, 535, 536, 537
for a sample resume, 605, 606
for the sample resume builder, 618
specifying in struts-config.xml, 610–611

input values, automatically checking, 594
Install Certificate button, 159, 161
instance variables, avoiding for shared data,

95–96
Integer.parseInt call, enclosing within a try/

catch block, 222
INTEGRAL value

mandating the use of SSL, 82
for transport-guarantee, 119

interfaces
implementing for event listeners, 268
layout template as, 561

internationalization (I18N), 540
Internet Explorer

Certificate Import Wizard, 162–163, 171–173
certificate information presented by, 161
certificate warning dialog box, 159, 161, 163
changing the language setting, 555

Content tab for Internet Options in, 170
disabling cookies, 305
disabling JavaScript in, 641

invalidate, calling, 112
investing directory, of hotdotcom Web

application, 129–132
invoke method, 380
invoker servlet

disabling, 52–56, 58, 140, 204, 209, 210, 218
providing a default URL for servlets, 121
Tomcat 5 turning off by default, 55
turning off for form-based authentication, 108,

120–121
turning off in BASIC authentication, 145

isELIgnored attribute, of the page directive,
87–88

isMissing method, of FormatFormBean, 599
isSecure method, of ServletRequest interface,

195
isUserInRole method, of HttpServletRequest,

83, 181
is-xml subelement, of jsp-property-group,

88–89
iteration, provided by c:forEach, 422

J
j_security_check, as a “magic” name, 111
J2EE elements, 97–102
Jakarta Taglibs project, 420
jar command, creating a WAR file, 17
JAR file(s)

copying from struts-blank, 449
giving a .war file name extension, 676
location of, 4
moving to a common directory in Ant, 660
placing in WEB-INF/lib, 7, 14
running WebClient as, 164
tag files bundled in, 8
with a .war extension, 17

jar options, with WAR files, 18
jar utility

creating MANIFEST.MF, 8
listing the contents of a WAR file, 680

<jar> task
common attributes of, 676
creating a distribution directory, 680
creating a JAR file, 676
creating WAR files, 675
simple example of, 677

Index696

Java, Ant built from, 646
Java class files

location of, 4
placing into WEB-INF/classes, 14

Java code
avoiding inside JSP pages, 379
in JSP pages, 67, 347

Java compilation process, 35
Java Developer’s Kit (JDK), 167
.java files, compiling, 665
Java Naming and Directory Interface name.

See JNDI name
Java Security Took Kit. See JSTK
Java system properties, accessing in Ant, 650
Java Virtual Machines, 95
JAVA_HOME variable, 647
Java-based custom tags, 371, 380
javac program, command-line options

available in, 658
<javac> task, 658–661, 665
JavaScript

client-side validation with, 625, 633
disabling in the browser, 641
enabling validation, 627, 639

JavaServer Faces (JSF), compared to Struts,
445

javax.servlet.Filter interface, 38, 205–206
javax.servlet.http.*, importing, 462
javax.servlet.jsp.tagext package, 348
javax.xml.rpc.Service, 100
JAX-RPC interface name, specifying the fully

qualified, 100
jaxrpc-mapping-file element, 100
JBoss server, 13
JDK, on a Windows platform, 167
JNDI name, 97

looking up the Web Service, 100
of a message destination reference, 101

job-openings.html
accessing, 254
located in the secure directory, 258

JSP, automatically populating a JavaBean, 443
JSP 2.0 EL (Expression Language)

displaying bean properties, 488
in JSP pages, 441

JSP actions, 419
JSP custom tag libraries, Struts as, 442
JSP Document, 88
JSP EL (Expression Language)

attribute value as, 358

functions, 405–406
implementing complex presentation logic, 419
invoking a method, 406
turning off and treating as regular text, 87

JSP files
adding attribute support, 359
complex dynamic attribute values, 392
dynamic attribute values, 386–387
making use of a tag, 352
supporting tag bodies, 363

JSP initialization parameters, 60–63
JSP page(s)

accessing before LoadInitServlet, 67
accessing in myWebApp, 12
bean properties, displaying in, 488–489
blocking access to, 205
business presentation logic, presenting output

of, 379
companyName, retrieving a previously stored,

64, 65, 66
configuring, 68, 86–92
custom URL pattern, assigning the original URL

as, 61
daily specials, displaying current, 334, 335
dependencies, 188
direct access, ensuring no, 80
dynamic content, generating inside, 347
filter, associated with, 70
form displaying the current company name, 279,

283–284
htmlfilter tag, using, 381, 384–385
initialization behavior, customizing, 221
initialization parameters, reading, 51
initializing and preloading, 56–68
jspInit, using, 57
layout, creating to populate, 560, 563, 567–568,

577–578
layout pieces, creating to define, 560, 562,

565–566, 572–576, 587
layout pieces, defining, 584
layouts, creating to use, 584, 586, 589–590
locating, 5–6
messages, displaying in, 542
messages, outputting in, 544–545
modifying the output of, 205
my WebApp, placing in, 11
names, assigning to, 42–44
names, declaring for, 50–51
naming, 50–52
never accessing directly, 117

Index 697

order count, summarizing current, 326, 332
parametric replacements, providing in, 553
process of initializing, 61–63
registered custom URL pattern, results of

mapping to, 63
results, displaying in, 455, 457–458, 468–469,

475–477, 485–486, 498–503, 508,
519–522, 550–551

return conditions, mapping to, 460–461,
465–466, 471–472, 491, 512, 529, 546

security, managing, 83
servlets, compared to, 371
Struts forwarding requests to appropriate, 450,

482
tag file, creating to use, 372
tag handler as a, 371
WEB-INF directory, placing inside, 117

JSP page properties, configuring, 87–92
JSP results pages, Struts invoking, 454
JSP scripting elements, 488
JSP scripting expression, 358
JSP Standard Tag Library. See JSTL
JSP tag libraries. See tag library
JSP tags. See also tag(s)

custom provided by Struts for beans, 443
defining separate components to use custom,

348–352
JSP value, for body-content, 351
JSP-based custom tags, 371, 372
JSP-based tag file, 372
jsp-config element, 39, 86

not available in version 2.3, 41
<jsp:doBody/> tag, 376
jsp-file element

required for JSP pages, 57
substituting for the servlet-class element, 50
using instead of servlet-class, 60–61

jsp:forward tag, accessing pages, 80
jsp:getProperty tag, displaying bean

properties, 488
jsp:include standard action, 431

compared to Tiles approach, 558
using dynamic inclusion, 430

jspInit method
JSP pages using, 51
using in a JSP declaration, 61

jsp-property-group elements, 39, 87
jsp-property-group subelement, of jsp-config

element, 39, 86
jsp:setProperty, compared to form beans, 481

JspTag instance, 411
JspTagException, 412
jsp:useBean tags

compared to bean:write, 489
displaying bean properties, 488

JspWriter object
directing the output of the tag body to, 380
referencing, 353

JSTK (Java Security Tool Kit), 167
JSTK Test CA, signing the CSR, 169
JSTL (JSP Standard Tag Library), 419

downloading, 420
installation of, 420–421

jstl.jar, copying into WEB-INF/lib, 420
JstWriter class, obtaining an instance of, 349
JVMs, clustered Web applications running in

multiple, 95

K
key. See encryption key
key attribute

for bean:message tag, 545
identifying each additional properties file, 543
of message-resources, 544
referring to a substitution value, 631

key-message pairs, in properties files, 539,
542, 552, 611

keystore
for a CA, 167–168
selecting for WebClient, 165
specifying a different, 175
used as default by JRE, 175

-keystore argument, 158
.keystore file, 158
keytool

certificates from, 157
details on, 158

keytool command, 168, 169

L
LAN (local area network), 95
language preferences, setting in browsers,

554–555
large-icon element, 84
LateAccessFilter class, 223, 224–225
layout(s)

creating JSP pages to populate, 563, 567–568,
577–578

defining in WEB-INF/tiles-defs.xml, 584,
588–589

Index698

layout(s) (continued)
making a template file representing, 571–572
sketching desired, 560–561, 563–564, 570–571,

586–587
sketching using Tiles Definitions, 583

layout pieces
JSP pages defining, 562, 565–566, 572–576
not accessible by users, 562

learning curve, required for Struts, 444
lib directory, 664
life-cycle events, listener classes associated

with, 93
listener element, 39, 93, 270
listener-class element, 93, 270
listeners

counting sessions, 298–305
packaging with tag libraries, 271
using multiple cooperating, 325–339

listfiles attribute, of <javac>, 659
load balancer, 95
LoadInitServlet

code listing, 64–65
init method storing initialization, 64
loading into memory at startup, 67

load-on-startup element, 67, 68, 96
local area network (LAN), 95
locale

character encoding used for a particular, 93
multiple properties files corresponding to, 540
setting explicitly, 554

locale files, containing translated messages, 555
locale subelement, 93
locale-encoding-mapping elements, 93
locale-encoding-mapping-list element, 39
locale-encoding-mapping-list subelement, 93
locale-specific properties file, 554
localhost, 12
location element, designating a URL, 72
log file entries, 313
log methods, of the servlet API, 217
LogFilter class, 218, 219
logging filter, 218–221
logging in, as a user with additional privileges,

154
logging out, page for, 112
logical tags, 381
login and login-failure pages, for form-based

authentication, 107, 110–111
login attempts

creating a page to report failed, 114

result of unsuccessful, 129, 131
login page

creating for form-based authentication, 108,
111–114

creating to report failed login attempts, 114
restricting direct access to, 112–114
for a Web application, 128–129

login-config element, 38, 111
controlling authentication method, 145
specifying form-based authentication, 279
specifying user authentication, 78, 254
of web.xml, 107, 110

login-error.jsp page, 128, 129
login-failure page, 128–129
login.jsp page, 128–129
LongServlet, 246, 247, 249–250
looping index variable, i, 398
looping structure, 399
looping tags, 387–390

creating, 398–399
nesting, 400

LoopTest servlet, 400
loop-test.jsp page, 400, 401
Luhn checksum, 632

M
main connector entry, changing in Tomcat,

158
main-layout.jsp file, 571
main-layout.jsp template file, 588
maintenance, ease with Tiles, 558
make utility, 16
makeTable tag, displaying records in a table,

393, 395
MakeTableTag class, 393, 395–396
makeWarning method

calling, 535
modifying, 533

manifest attribute, of <jar>, 676
<manifest> task, 678
MANIFEST.MF file, 8
manual validation, 624

of input fields in the Action class, 594
performing in input fields in an Action, 596

map values, updating and creating, 427
mapping.findForward, 462
marty-with-snake.html, 431, 432
mask, specifying for an input field, 636
mask validation rule, 632
Maven, 16–17, 646

Index 699

message(s)
outputting in JSP pages, 542, 544–545
parameterized, 553
targeting for a particular input field, 598

message attribute, of html:messages, 597, 598
message destination

specifying the type and use of, 101
unique name for, 102

MessageBean, 516, 519
message-destination element, 40, 102
message-destination-name element, 102
message-destination-ref element, 40,

101–102
message-resources element

adding to struts-config.xml file, 613
common attributes of, 544
listing the properties file, 628
in struts-config.xml, 554

message-resources entry
after the controller entry, 628
in struts-config.xml, 543

MessageResources_es.properties file, 556
MessageResources_fr.properties file, 556
MessageResources.properties file, 547
META-INF subdirectory, 8
METHOD, of POST with password fields, 111
methods, implementing for event listeners,

268–269
MIME types, associating files with, 85
mime-mapping element, 39, 85
mime-type subelement, of mime-mapping, 85
missing, 516
missing-data condition

returning, 605
in struts-config.xml, 604

missing-data forward condition, 599
missing-value condition

of execute, 511
mapped to the original input page, 535
returning, 516
specifying the location of the original input

form, 529
missing-value value, 535
missing-value.jsp page, 519, 520, 521
<mkdir> task

in Ant, 654
creating directories, 671
defining to create a destination directory, 665

Model-View-Controller architecture. See MVC
architecture

modification filter
generic, 237–239
specific, 239–244

ModificationFilter class, 239
ModificationFilter servlet, 238–239
multimapping patterns, 47–50
MVC (Model-View-Controller) architecture,

441
consistent implementation of, 444
loading initialization parameters, 60
rigid approach to, 445
security constraints not applying to resources

accessed through, 253
url-pattern not applying to, 80

MVC framework, Struts as, 442

N
{n} notation, in messages, 620
name attribute, 512

in a <project> element in Ant, 649
of the action element, 460
adding to the action element, 487, 492
in an Ant target, 650
of bean:write, 489
definition element with, 585
of forward, 461

name element, of attribute, 358
name subelement, of tag, 350
names, assigning to servlets on JSP pages,

42–44
namespace URLs, in the XML Schema file, 37
name-value pairs, in manifest entries, 678
nested custom tags

handling, 410–412
usage of, 405

no-argument constructor
instantiating the tag handler class, 349
provided by the Java compiler, 493

NoInvoker servlet, in hotdotcom, 140–141
NoInvokerServlet, 53, 54, 156, 210, 216
NONE value, 119
nonexistent values, for initialization

parameters, 57
non-SSL requests, redirecting, 195–196
NotFound.jsp, 74
NotFound.jsp error page, 252
null, checking for, 57
null attribute, in message-resources, 543, 544

Index700

O
object creation, as an expensive operation, 315
one result mapping, 463–470
onsubmit attribute

adding to html:form tag, 633
adding to the beginning html:form tag, 639–640

order count, resetting, 334–339
order form, submitting with missing fields, 642
order-confirmation.jsp page, 641, 643
OrderFormBean, 638–639
order-form.jsp, 639, 640
OrderHandlingServlet, 310
ordering form, 641
orders

HTML form for sending, 307, 311, 312
result of cancelling and ordering, 313

order-tracking system, 326–333
organization, facilitated by Web applications, 4
org.apache.struts.action.*, importing, 462
otherwise tag, 425–427
out tag. See c:out tag
outer tags, communicating with inner, 411–412
out.jsp page, 421–422
overlapping patterns, resolving matching for

URLs, 50
overwrite attribute, of <copy>, 657

P
packages

placing Action objects in, 466
placing all classes in, 461

packaging company name listeners, 290–296
page(s)

creating to report failed login attempts, 108, 114
laying out with files, 558–582
for logging out, 112
reusing repeated sections of, 558
simplifying the creation of similar, 558
unprotected in a Web application, 141–143

page layout
sketching out desired, 560
template file representing, 564–565

pageEncoding attribute, of the page directive,
88

page-encoding subelement, of jsp-property-
group, 88

param tag, 433–435
parameter attribute, in message-resources,

543, 544

parameterized error messages, 620–623
parameterized messages, 553
parameterized properties file, 621, 623
parametric arguments, adding to

ActionMessages, 620
param-name subelement, 56, 222
param-value subelement, 56, 222
password(s)

checking in BASIC authentication, 189
encrypting, 109
setting up for form-based security, 107, 108–110
setting with Tomcat, 109–110
storing unencrypted, 109

password file
in form-based authentication, 127
Tomcat-specific, 279, 286–287
used by Tomcat for a Web application, 151

password-protected resources, 146
Paste Shortcut, 15
path attribute

of the action element, 460
of Context, 12
of forward, 461

<path> element, 660
patterns

exact-match for URLs, 45–47
multimapping for URLs, 47–50
resolving matching overlapping for URLs, 50

physical style tags, 381
PKI (public key infrastructure), 167
placeholders, Struts substituting text into, 631
plug-in element, not entering by hand, 628
port component, handler for, 101
portability, of Web applications, 4, 9, 157
port-component-link element, 101
port-component-ref element, 101
port-name element, 101
POST data, sending to the server, 165
POST METHOD

as default, 509
as default method for html:form, 510

POST request, in WebClient, 164
prefix attribute, of taglib, 352
prepare target, in boats2.xml, 670–671
prepopulating, forms, 504–537
presentation code, separating high-level

access decisions from, 203–204
preservelastmodified attribute, of <copy>, 657
prime number, outputting a random 50-digit,

353

Index 701

prime tag, with variable length, 359–361,
374–375

prime2.tag, declaring an optional attribute,
374

Primes class, 353–355
primes-1.jsp, 359, 361
primes-2.jsp page, 374, 375
PrimeTag class, 359, 360
Principal object, 181
print method

of the JspWriter class, 349
on the JspWriter object reference, 353

PrintWriter, returning, 234
process control, guaranteeing, 668
ProcessRequestStats servlet, 316, 318–319,

323
programmatic security, 106, 180

combining with container-managed, 180–183
example combining container-managed and,

183–187
with SSL, 195–201

prohibited-site filter, 227–233
project directory structure, placing JAR files

in, 660
<project> root element, in an Ant build file,

649
-projecthelp option

requesting in Ant, 650–651
running Ant on boats1.xml, 664–665

properties, defining in Ant, 649
properties file(s), 539, 554

adding parametric notation to messages in, 553,
620

advantages of, 540
for chooseFormat2, 613
containing key-message pairs, 552
copying from Struts, 449
creating, 542, 609, 611
declaring, 543, 547
displaying messages in an application, 546
editing, 627, 628–629, 635
flow of control updates for, 540–541
listing in struts-config.xml, 628
loading in struts-config.xml, 543–544
loading locale-specific, 554
parameterized, 621, 623
steps for using, 542–545
unique identifier for, 544

property attribute
of bean:write, 489

of c:set, 428
in a field element, 630
of html:messages, 598
indicating messages to extract, 612

protected pages, at a Web application, 152–156
proxy headers, proxy servers using, 166
proxy servers, for WebClient, 165–166
pseudo-directory, for each action, 523
public key certificate, creating a self-signed,

157–158, 168
public key infrastructure (PKI), 167
public static method, creating a class with, 405
public void destroy() method, 206
put element, 585

Q
QName, of the Simple Object Access Protocol

(SOAP) header, 101
quiet attribute, of <delete>, 654

R
random coin flip, 387
realm, designating, 145–146
realm name, designating, 144
realm-name subelement, of login-config, 78, 79
recordRecord method, 316
redirect attribute, of forward, 461
redirect tag, 435–436
redirect1.jsp page, 435–436
redirect2.jsp page, 435–436
RegisterAction2 class, 473–474
registering, listeners, 93
register.jsp page, 550
registration

with the daily special servlet, 228
of a filter, 210
output pages for incomplete, 522
result of a successful, 537
as server specific, 9

registration page, 521, 536
RegistrationAction.java, 549
RegistrationFormBean.java, 548–549
relative URLs

with c:redirect, 435
handling with Tags, 568–569
referring to images or style sheets, 141
referring to servlets, 133

relogin servlet, writing, 144
remove tag, 428–430

Index702

repetition, avoiding with Tiles Definitions, 583
replacement filter, 237–244
ReplaceSiteNameFilter class, implementing

the Filter interface, 239, 241–243
ReportFilter class, 210, 211

code listing, 69
in the coreservlets package, 70
updating to place messages in the log file, 218

reporting filter, 210–216
req-stats.jsp page, 316, 319
request(s)

creating Action objects to handle, 473–474
defining an Action class to handle, 485, 496–497,

516–517
processing with Action objects, 458–481

request attribute listeners, 268
request frequency collection, 323–325
request headers, specifying for WebClient, 165
request listeners, 268
request objects, determining number created,

315
request parameter names, in sync with bean

property names, 504
request parameters

extracting from the form bean, 516
handling with form beans, 481–503

request scope, 487
beans in, 498
storing result beans, 453

request scope attributes, listener monitoring,
322

REQUEST value, of dispatcher, 252
RequestCounter class, 316, 317–318
requestDestroyed method, 314, 315
RequestDispatcher

accessing pages, 80
configuring filters to work with, 251–253
handling forwarding of requests, 605, 606
handling the request flow, 618
in servlets, 441

RequestDispatcher.forward method, 255
request.getContextPath, prefixing a URL, 568
request.getParameter

calling, 472
making repeated calls, 481

requestInitialized method
calling, 315, 316
implementing, 314

Requests for Comments (RFCs), 190, 197
RequestStatsBean, 317, 320

required attribute, of the attribute directive,
374

required element, of attribute, 358
required validation rule

validating against, 636
in validation-rules.xml, 632

reset method
of ActionForm, 487
of form beans, 481

resource factory, 98
resource-env-ref element, 40, 97
resource-env-ref-name element, 97
resource-env-type element, 97
resource-ref element, 40, 98
resources

accidentally providing unrestricted access to, 253
organizing using Web applications, 4
releasing of, 270
restricting access to, 80–82

response(s)
to authentication failure, 189
blocking the normal, 226–227
modifying with filters, 234

response headers, setting, 246
response wrapper

creating, 234
reusable, 235–237

result data, 485
result mappings, 470–479
result pages, placing, 465
results, displaying in JSP pages, 519–522
results beans

creating, 454, 456, 485, 494–496, 506, 508,
515–516

creating and storing, 490
results pages

placing, 472
preventing direct access to, 458

resume
application, 620
choosing colors and font sizes for, 612–619
output page for, 600, 605
producing an online, 599

return conditions
in execute method, 473
mapping to JSP pages, 460–461, 471–472, 491,

512, 529, 546
return values

of initialization parameters, 57
mapped by struts-config.xml, 521

Index 703

RFCs (Requests for Comments), 190, 197
RiskyPage.jsp

code listing, 76
lucky results of, 77
unlucky results of, 77

role(s)
accessing a JSP page from different, 183–187
setting up for form-based security, 107, 108–110
for users, 107

role element, rolename attribute, 109
role names

aliases for existing, 182
assigning, 83
in web.xml, 81

role-name elements
in auth-constraint, 81, 117
in security-role elements, 108

role-name subelements, of security-role-ref
element, 38, 83

root installation directory, in Tomcat, 15
rtexprvalue element

of attribute, 358
as true, 386, 391

runtime values, 620

S
scalability, of J2EE applications, 97
scope (request) attribute, 512
scope attribute

of the action element, 460
adding to the action element, 487, 492
of bean:write, 489
of c:import, 430, 431
of c:set, 428
of c:url, 434

scoped attribute, setting, 427
scripting elements, not legal in the tag body,

351
scripting-invalid subelement, of jsp-property-

group, 88
scriptless value

for body-content, 351
specifying body-content element, 380

Search menu section, of a Tiles layout, 570, 571
secure directory, safeguarding, 254
Secure Sockets Layer. See SSL
security

approaches within the Web application
framework, 106

handling programmatically, 188–194

providing, 78–83
strategies for implementing, 179

security hole, plugging, 253–260
security role aliases, 182–183
security settings, applying to actions, 524
security-constraint element, 38, 80

example of the use of, 115
restricting resource access, 254
specifying restricted URLs, 146
stipulating authenticated users in the ceo role,

279
user-data-constraint subelement of, 108
of web.xml, 108, 115

SecurityHolePlugFilter class
implementing the Filter interface, 253, 255–256
servlet testing, 254

SecurityHoleServlet servlet, 254, 256
SecurityInfo servlet, 198–200, 201
security-role element, 38–39

containing a required role-name element, 145
declaring abstract roles, 118
declaring the executive role, 254
directly under web-app, 81

security-role-ref element, 38–39
defining aliases, 181
as a subelement of servlet, 83

security-role-ref subelement, of servlet, 182
self-signed certificates

resulting in warnings, 136
for testing purposes, 157

sendRedirect method
calling, 254
servers using, 112

sendRedirectURL method, 435
sensitive data, preventing unauthorized access

of, 105, 179
separation, of Web applications, 4
Serializable interface, HttpSession objects

implementing, 96
serialization, of session objects, 268
server(s)

assigning passwords and role membership, 109
handling security, 106
loading lower numbered servlets or JSP pages

before higher numbered, 68
prohibiting access to ServletContext, 27
registering Web applications with, 9–14

server certificate
first and last name for, 157
signing, 167–169

Index704

server request load, 315–321
server-side validation, 625, 641
server-specific component, 188
server.xml, backing up before editing, 11
Service Endpoint Interface, 101
service-endpoint-interface element, 101
service-interface element, 100
service-qname element, 101
service-ref element, 40, 99–101
service-ref-name element, 100
servlet(s)

accessing, 5–6, 12
assigning names to, 42–44
associating a filter with, 70
blocking access to, 205
configuring to load at server startup, 68
customizing initialization behavior, 221
dependencies, 188
explicitly declaring, 11
initializing and preloading, 56–68
loading when the server starts, 64–68
managing security, 83
modifying the output of, 205
placing in WEB-INF/classes, 6
protecting, 116
providing initialization parameters, 56
referring to by registered name, 43
security-role-ref subelement, 182
specifying with the same load-on-startup

number, 68
/servlet/ * URL mapping entry, 55
servlet application programming interface

(API), 20
servlet context

accessing from filters, 217
monitoring creation and destruction of,

270–271
obtaining a reference to, 270, 272
using, 270, 272
of a Web application, 26

servlet context attribute listeners, 268
detecting changes in attributes, 334
steps in using, 277–278

servlet context listeners, 268
servlet contexts, drawbacks to sharing, 27
servlet element, 38, 42

in web.xml, 11, 209
servlet log file, writing reports into, 217
servlet name, associating the filter with a

specific, 70

servlet request, identifying initialization and
destruction, 314–315

servlet specification, versions of, 37
servlet URL, default, 108
/servlet/ URL pattern, remapping, 53–55
/servlet/* pattern, remapping, 52, 121, 209
servlet-api.jar file, in Tomcat, 20
servlet-class subelement, of servlet, 42–43
<servlet-class> element, 21
ServletContext

accessing from the doFilter method, 217
not storing data in, 96
obtaining a reference to, 316

ServletContext objects
associated with a specific URL, 26
sharing minimal information among Web

applications, 25
ServletContextAttributeEvent class, methods

of, 278
ServletContextAttributeListener interface,

277, 279, 326
ServletContextEvent class, getServletContext

method, 270
ServletContextListener class, 270–271, 326
servlet-mapping element, 38

assigning a custom URL, 44
url-pattern subelement, 87
in web.xml, 6, 11

servlet-mapping web.xml element, 120, 209
servlet-name subelement

of filter-mapping, 208
of servlet, 42–43
of servlet mapping, 44

ServletOutputStream
as an abstract class, 235
returning, 234

ServletRequest argument, of doFilter, 205
ServletRequest interface, 195
ServletRequest object

in doFilter, 204
filters having full access to, 69

ServletRequestAttributeEvent class, methods
of, 322

ServletRequestAttributeListener interface,
322

adding to version 2.4 of the servlet specification,
269

implementing, 322, 323, 324
ServletRequestEvent class, getServletRequest

method, 314

Index 705

ServletRequestListener interface, 314
adding to version 2.4 of the servlet specification,

269
implementing, 314, 316
steps involved, 314

ServletResponse argument, of doFilter, 205
ServletUtilities class, 382–383
session(s), listeners counting, 298–305
session attribute listeners, 268
session attributes

names of all, 27
watching for changes in, 306

session counts
JSP page displaying, 299, 302
placing, 298–299

session creation and destruction, 297–298
session listeners, 268
session objects, 39
session scope, 453, 487
session timeouts

choosing low, 299
controlling, 83–84

session tracking
automatic, 433
increasing the server's memory load, 298
remembering validated users, 107

session-config element, 39, 83–84
session-config entry, creating in web.xml, 299
SessionCounter class, 298, 300–301
sessionCreated method, 297, 298
sessionDestroyed method, 297, 298
session-timeout element, 83–84
set tag, 427–430
setAttribute method, calling on the session

object, 297
setAttributeName method, 358
setCharacterEncoding method, 93
setContentType method, 93
setCount method, of ForTag, 387
set.jsp page, 428–430
setLength method, of PrimeTag, 359
setLocale method, 93
setMaxInactiveInterval method, of

HttpSession, 39, 83, 84
setPath method, of the Cookie class, 26
SetSharedInfo servlet, 27–28
settable bean properties, 488, 493
setter method

providing for an attribute, 385–386
for results beans, 494

shareability, connections obtained from a
resource, 98

shared condition (forward) mappings,
combining, 479–481

shortcuts, simplifying in deployment, 15
ShowRecords servlet, 393
show-records.jsp page, 393, 395
ShowSampleAction Action class, 599, 603–604
ShowSampleAction class, modified, 613, 617
ShowSharedInfo servlet, 27, 28–29

shareTest results, 31, 32
shareTest2 results, 31, 32

signup2.jsp, 534
SignupAction1.java, 517
SignupAction2.java, 533
signup-confirmation.jsp page, 519, 520, 521
simple addresses (without subdirectories), for

URLs, 523
simple authentication, 105
simple messages example, 546–552
simple prime tag, using tag files, 372–373
simple Tiles example, 563–568
SimpleLoopTest.java class, 387, 388
simple-loop-test.jsp page, 387, 389
simplePrime2.tag, 372
simple-primes-1.jsp page, 356–357
simple-primes-2.jsp, 372, 373
SimplePrimeTag tag handler class, 353, 355
SimpleTag API

custom tags utilizing, 348
illegal to include scripting elements, 351
letting inner tag get hold of an outer tag, 411

SimpleTag interface, 348, 357
SimpleTag model, 349
SimpleTagSupport class

extending, 353, 381
in javax.servlet.jsp.tagext package, 348

slash (/), beginning the value of url-pattern
element, 44

small-icon element, 84
snake.html, importing, 431, 432
soap-header element, 101
soap-role element, 101
software-based load balancers, 95
source code

archive for this book, 559
copying files to the deployment server, 15
protecting from potential hackers, 677

source code management system, 664
source files, recompiling, 666

Index706

SPAN element, one-cell table enclosing, 364
Spanish, internationalizing for, 555–557
SRC attribute, 431
src directory, 664
srcdir attribute, of <javac>, 658, 659
src/main/java folder, 16
SSL (Secure Sockets Layer)

with Apache Tomcat, 174
configuring Tomcat to use, 156–164
determining if in use, 195
encrypting traffic, 105, 119
need for, 190
programmatic security and, 197–201
programmatic security with, 195–197
redirection to the URL using, 107
with relative URLs, 133
specifying URLs available only with, 108,

119–120
in WebClient, 165

SSL communication, with Tomcat through
WebClient, 175, 176

SSL connector entry, editing in Tomcat, 158
ssl directory, 132–137
SSLHandshakeException “No trusted

certificate found.” exception, 175
SSLSocketFactory, obtaining a socket from,

165
standard header, providing in multiple pages

of an application, 89
standard.jar, 420
startup file, setting CLASSPATH in, 447
static content, associating a filter with, 70
static data, avoiding for shared data, 95–96
static method, calling inside a JSP page, 405
stock purchase page, accessing with SSL, 137
StockTip servlet, 191–193
StopRequestCounter class, 323
StringOutputStream method, 235, 237
strings, defining in properties files, 542
String.split method, of BannedAccessFilter,

227–228
StringWrapper class, 235–236
Struts

Action class manual validation of input data,
594–595

ActionForm bean updates for validation, 607–608
adding to an existing Web application, 449
advantages of, 442–444
automated validation, flow of control with

updates for, 625–626

automatic validation, configuring for, 627
basic steps in using, 484–486, 506–508
compared to the standard MVC approach,

442–445
different views of, 441–442
disadvantages of, 444–445
downloading, 446–447
flow of control, 450–454, 525
html:tags and form beans, flow of control,

504–506
installing, 446–447
populating the bean with input data, 599
processing flow of a request in, 490
processing flow through, 469
properties files, flow of control with updates for,

540
setting up, 446–449
steps implementing control flow, 454–458
testing, 448
understanding, 441–445

Struts 1 framework, 445
Struts 1.3, 446
Struts 2 framework, 445
Struts applications, 448–449
Struts configuration file. See struts-config.xml

file
Struts documentation, bookmarking, 446, 447
Struts html: tag library, importing, 569
Struts html:tags. See html:tags
Struts servlet definition, 558–559
Struts servlet entry, 559–560
Struts Shale, 445
Struts Tiles, 539. See also Tiles
Struts Tiles tag library, 563, 586
Struts Validation framework, 593
Struts-based Web applications, 446
struts-beans/register.jsp form, 498
struts-blank Web application, 446, 448
struts-config.xml file, 465–466

changing, 455–456
checking a properties file, 609
for chooseFormat1, 600, 604
for chooseFormat2, 613, 616
complete, 472
complete listing, 492, 512–513, 547
configuring for automatic validation, 627–628,

634
copying, 449
defining Actions in, 459
defining form beans, 486

Index 707

deleting examples and comments from, 456
with a forward definition, 453
forward entry, 463
listing of, 530
loading the properties file in, 542, 543–544
mapping error code back to the input form, 599
modifying, 454, 455–456, 463, 465–466,

471–472, 484, 491–492, 507, 511–513,
529, 546

reading only when Web applications are first
loaded, 456

specifying an input page, 609, 610
with two actions, 479–481

struts-message Web application, 552
stubbed-out layout, HTML fragments for, 560
stubs (tiles:tags), establishing, 561
stylesheet information, retrieving from a bean,

600, 605
stylesheets, 570
subdirectories

advantages of using, 524
designing action URLs without and with, 523–524
disadvantages of using, 524
grouping all when grouping files in a fileset, 656

success condition, 477, 479
of execute, 511
execute method returning, 501
mapped by struts-config.xml, 535
mapping to a single results page, 546

success return condition, 473
successful login, result of, 129, 132
SuggestionBean class, 494, 495, 497
SuggestionUtils class, 494, 495–496
Sun Certified Web Component Developer

(SCWCD) certification, 419
sun.misc.BASE64Decoder class, 190
swimming world records, 393
switch-case-default statements, 425
symbolic links, 15
system setting, setting CLASSPATH through,

447
system time, recordRecord method adding, 316
system-wide initialization parameters, 63

T
table-formatting tag, listing records, 393
tag(s). See also custom tags; JSP tags

assigning attributes to, 357–359
tag attributes

assigning complex objects as values, 391–392

assigning dynamic values to, 385–387
declaring inside a tag element, 358

tag body
controlling a small part of, 398
including in tag output, 362–363
manipulating, 380–381
outputting inside a tag file, 376
sending the JSP content of, 363

tag body scope attribute, 399
tag element, subelements of, 350–351
.tag extension, 372
tag files

attributes declared inside, 374
creating, 371–372
heading tag using, 376–377
placing in META-INF/tags directory in JAR

files, 8
placing in WEB-INF/tags directory, 8
prime tag with variable length using, 374–375
simple prime tag using, 372–373

tag handler class, 348–349
adding attribute support, 357–358
complex dynamic attribute values, 391
dynamic attribute values, 385–386
supporting tag bodies, 362–363

tag library. See also bean tag library
declaring, 406, 508
packaging event listeners in, 288–289

Tag Library Descriptor files. See TLD files
tag library descriptors, locating, 86
tag output, including tag body in, 362–363
tag-based code, inside JSP pages, 379
tag-class subelement, of tag, 350
tagdependent value, for body-content, 351
tagdir attribute, declaring tag files, 8
taglib directive, 352, 386, 392

assigning a prefix for a JSP page, 406
declaring tag files, 8
importing the JSTL tag library, 420
JSP pages accessing TLD files, 7–8
tagdir attribute, 372
uri attribute, 86

taglib element, 86
taglib subelement, of jsp-config element, 39,

86
taglib-location subelement, of taglib element,

86
taglib-uri subelement, of taglib element, 86
target attribute, of c:set, 428
target dependencies, benefits of, 668–669

Index708

<target>, with a depends attribute, 669
targets

in an Ant project, 648
assigning tasks to in Ant, 651
creating dependencies between in the build file,

668
logically bundling together all, 672
writing in Ant projects, 650–651

.tar.gz format file, 420
tasks, assigning to targets in Ant, 651
template, for the TLD, 351
template file(s)

creating, 561–562
making to represent a layout, 571–572
not allowing user access to, 562
placing in WEB-INF, 560, 562
representing a layout, 560, 561–562, 564–565, 583

test attribute
of c:if, 424
of c:when, 425

testApp
accessing with URLs, 23–25
unzipping app-blank.zip to, 18

testApp directory, copying to tomcat_dir/
webapps, 23

test.html
adding to the testApp directory, 19
downloading, 19
URL for retrieving, 23, 24

test.jsp
adding to the testApp directory, 19
downloading, 19
URL for retrieving, 23, 24, 25

TestPage.jsp
listing of, 51
results of invoking, 51, 52

TestServlet1, result of invoking, 44–45
TestServlet1 code, 43
TestServlet.class

declaring, 21
URL for retrieving, 23, 25

TestServlet.java
compiling, 20
downloading, 19

text fields
html:text for, 511
prepopulating with initial values, 504
redisplaying values in, 504

text file, placing messages in, 539
text value, substituting into a message, 553

ThenTag class, 412, 414
tile:insert tag, declaring the template file, 567
Tiles

laying out pages with, 558–582
page layout facility, 442
prerequisites for, 558–560
reasons for using, 558
steps in using, 560–563

Tiles Definitions, 582–590
reasons for using, 583
steps in using, 583–586

Tiles JAR file, 559
Tiles plug-in

adding to struts-config.xml, 559
using in Struts, 449

Tiles tag library, declaring, 561
tiles-def.xml, 582

defining layouts in, 584–586
format for, 584–585
specifying the top-level layout definition, 588

tiles:getAsString tag, 560, 564, 565, 583
stubbing out locations for String substitutions,

561–562
for the title section, 571

tiles:insert tag, 560, 564, 565, 583
applying appropriate layout definitions, 589
referring to the definition layout, 586
referring to the layout template file, 563
stubbing out sections, 561, 571

tiles:put elements, on main Web pages, 577
tiles:put tag, 560

specifying content, 567
specifying file fragments, 577
specifying layout pieces, 563

tiles:tags, 539, 558
acting as stubs, 560
placing layout pieces, 561

time properties, 653
timeout, setting, 83
timestamp property, for the manifest file,

679–680
Title section, of a Tiles layout, 570, 571
TLD (Tag Library Descriptor) file(s), 349–351

adding attribute support, 358
changing the location of, 39
for company-name-taglib, 292
complex dynamic attribute values, 391–392
declaring a tag file and its path, 8
declaring an EL function method inside, 405–406
dynamic attribute values, 386

Index 709

example, 349
giving the real location of, 86
placing in WEB-INF directory, 7–8, 289, 351
placing inside META-INF directory, 8
putting listener declarations in, 288
referring to from multiple JSP pages, 352
tag bodies and, 363
template for, 289
in XML format, 349

TLD csajsp-taglib.tld, 355–356
.tld extensions, system searching for, 288
TLDDoc, for JSTL, 420
tlds directory, within WEB-INF, 7
toBeMatchedClass type, 411
TODAY property, in Ant, 653
TodaysSpecialServlet, 215
todir attribute, of <copy>, 657, 658
tofile attribute, of <copy>, 657
Tomcat

authentication used by, 81
auto-deployment directory, 23
configuring to use SSL, 156–164
enabling SSL support in, 157–164
global web.xml configuration settings, 7
globally disabling the invoker, 55–56
information on setting up, 55
localhost log on, 220–221
locating JAR files, 7
password file used by, 127
registering Web applications with, 10–12
setting passwords with, 109–110
setting up to use SSL directly, 120
setup and configuration guide, 9
software-based load balancer, 95
starting, 23

Tomcat 5.5, placing the .war file, 675
tomcat_dir, 15
tomcat_dir/conf/server.xml, Context element

in, 11
tomcat_dir/webapps, copying testApp to, 23
tomcat-users element, 109
top-level directory

location varying from server to server, 9
of a Web application, 5

top-level home page, for a Web application,
122, 147–148

top-level layout, defining, 582, 585
totalSessionCount, 298
transparency, less with Struts applications, 445
transport-guarantee element, 133

transport-guarantee subelement, of user-data-
constraint, 82, 119

trusted certificate, 169
Trusted Root Certification Authorities tab, 171
try/catch block, enclosing Integer.parseInt

call, 222
try/catch construct, 437
<tstamp> task, in Ant, 653–654
type attribute

of the action element, 460
designating a fully qualified class name, 465

U
unauthenticated users

dialog box for, 153
directly accessing the login page, 112
invoking another protected resource, 114
requests by, 338

unauthorized users, preventing from
accessing sensitive data, 105, 179

Un-Divet tool, Web site for ordering, 633
uniform resource locators. See URL(s)
UNIX/Linux, setting the CLASSPATH, 21
unprotected pages, in a Web application,

141–143
unsuccessful login page, 153
update attribute, of <jar>, 676
uri attribute, of taglib, 352
URL(s) (uniform resource locators)

accessing testApps, 23–25
assigning multiple to invoke the same servlet, 47
beginning with slashes, 568, 569
custom, 44–50
default, 52, 57
designating for protection, 80
for each Web application, 4
encoding, 433
ending with a certain extension, 49
filter registration with all, 218
general options for, 523
handling relative with Tags, 568–569
mapping to match JSP pages, 87
password protected for form-based

authentication, 108, 115–118
password protected in BASIC authentication,

145, 146
redirecting in JSP pages, 435
for a servlet as a security hole, 5–6
specifying SSL availability only, 108, 119–120,

145, 147

Index710

url attribute, of c:redirect, 435
URL pattern, matching exactly, 45
URL prefix, registering for a Web application, 5
URL rewriting

as the basis of session tracking, 107
session tracking through, 433

url tag, 433–435
url.jsp page, 434–435
url-pattern element, 80

applying to clients accessing resources directly,
116–117

associating original URL with registered servlet
name, 61

directing matching requests to a servlet, 53
in web.xml, 11

url-pattern subelement
of filter-mapping, 208
of jsp-property-group, 87
of servlet mapping, 44

user(s)
accessing protected resources, 81
defining for a Web application, 151
defining in Tomcat, 109, 110
designating for resource access, 117
returning name of current, 181

user authentication. See authentication
user elements, attributes of, 109
user ID, storing the HttpSession object, 188
user-data-constraint, 80, 82, 115, 119, 145, 146
user.dir property, with <echo>, 653
UserFormBean, 493–494
username/password string, getting the

encoded, 189
usernames

checking in BASIC authentication, 189
setting up for form-based security, 107, 108–110

user-specific data, monitoring changes to, 297
USTMBody.jsp, 89, 91
USTMFooter.jsp, 89, 91
USTMHeader.jsp, 89, 91
Util class, defining, 407, 408
utilities, Struts as a collection of, 442

V
validate attribute, specifying as optional,

610–611
validate method

of ActionForm, 487, 593, 618
checking input fields for errors, 607
creating in ActionForm, 609–610

of form beans, 481
validation

in the Action, 593
automatic, 594
client-side versus server-side, 624–625
performing in Action, 596–598
preventing, 611

validation logic, problems in, 475
validation rules

available from validation-rule.xml, 630, 632
putting in validation.xml, 629–632
setting up for input fields, 630–632
specifying dependency of, 630
in the Struts Validation framework, 630

validation.xml file
putting validation rules in, 627, 629–632, 636–637
structure of, 629–630

validator messages, editing in the properties
file, 628

Validator plug-in, 449
ValidatorForm, extending, 627, 638–639
value attribute

of c:set, 427–428
of c:url, 433

value.required parameterized message, 620
var attribute

of c:import, 430
of c:set, 428
of c:url, 434

vendor lock-in, avoiding, 4
verbose attribute, of <javac>, 659
-verbose command-line option, 666
version 2.3 of web.xml, ordering of web-app

elements with, 40–42
version 2.4 of web.xml, web-app subelements

declared with, 38–40

W
WAR (Web ARchive) files

bundling Web applications into, 17–18
copying into tomcat_dir/webapps, 23
creating using Ant, 675–678
for deployment of boats Web application, 679
listing the contents of, 680
target directory for building, 664
zipping testApp into, 23

WAR file name, creating a local property for,
679

.war file name extension, 676
war target, for the build file, 679–682

Index 711

warning property, of ContactFormBean, 530
warnings, stored in the form bean, 533
Web application(s), 3, 267

adding Struts application to existing, 449
advantages of, 3–4
aspects to securing, 105
auto-deploying through a WAR file, 675
building, 18–25, 670–675
bundling into WAR files, 17–18
creating a directory structure, 10, 14
deploying, 14–17, 36
developing, 14, 95–97
development and deployment, 14–17
documenting, 84–85
home page for, 147–148
keeping data and functionality separate, 25
organizing into subdirectories, 664
prefixes prepended automatically, 509
registering, 5, 9–14
separation of, 4
sharing data among, 25–32
standard location for each type of resource, 4
structure of, 5–8
Tomcat password files not specific to, 151
using Ant to build, 668–669

Web application objects, obtaining access for
event listeners, 269

Web application security, fundamental aspects
of, 179

Web application WAR file, creating, 679–682
Web archive files. See WAR files
Web console application, WebLogic’s, 13
web directory, 664
Web pages. See JSP page(s)
Web resources. See resources
Web servers

choosing the vendor of, 4
talking to interactively, 164–166

Web Service, declaring a reference to,
99–100

Web Services Description Language file. See
WSDL file

Web sites
designing using Tiles Definitions, 582
representative pages for, 563–564

web-app
correctly ordering version 2.3 elements, 40
as top-level (root) element, for the deployment

descriptor, 36
Web-based applications, debugging, 164

WebClient
options, 164
representative conversation of, 166
talking to Web servers interactively, 164–166
with Tomcat and SSL, 175–176

WEB-INF directory, 4
WEB-INF/classes directory, 4, 542
WEB-INF/lib

directory, 4
JAR files in, 7

WEB-INF/tiles-defs.xml
defining layouts in, 584–586
for e-boats2, 588–589
specifying the top-level layout definition, 588

WebLogic server, registering Web applications
with, 13

web-resource-collection, 80–81
element, 108
subelement of security-constraint, 108, 115,

116–117, 146
web-resource-name element, 80
web.xml file

abstract roles, listing all possible, 118
for access time filter, 226
from the app-blank template Web app, 30–31
for the application events examples, 339–345
company name listener, changed, 281–283
for compression filter, 250–251
configuration properties to JSP pages,

configuring, 87
creating, 10
custom URLs, declaring names and mapping, 42
declaring with version 2.3, 37
default servlet URLs, blocking, 209
default servlet URLs, redirecting requests from,

121
default URLs, showing how to disable, 53
designating form-based authentication, 110, 111
distributable element, 97
downloading a blank, 37
elements of, 37
error pages for exceptions, designating, 77
error pages for HTTP error codes, designating,

73
exact matching, showing, 45–46
filter declaration in, 70
filter examples, complete version for, 260–265
filter usage, showing, 71
formal specification of, 35
global on a few servers, 7

Index712

web.xml file (continued)
initialization parameters, illustrating, 59
J2EE environment, elements in, 97
JSP pages, illustrating the naming of, 51
jsp-property-group, showing, 89, 90
lines, adding to, 21
listener, declaring, 94
location of, 4
for logging filter, 220
login-config, showing, 79
modifying, 11
multimapping, showing, 47
for prohibited-site filter, 232–233
protected URLs, specifying, 115
purpose of, 35–36
registered name for a JSP page, assigning, 61,

62–63
for reporting filter, 211–212
for RequestCounter listener, 321
for resetting order counts, 337
security, elements relating to, 78–83
security role aliases, illustrating, 182–183
from securityInfo Web app, 200
server supporting nonstandard, 110
server-specific global, 55
servlet name, showing, 44
for session counting listener, 299, 301
for site name replacement filter, 243
for StopRequestCounter listener, 324–325
testApp, complete code of, 21–23
text editor, opening in, 21
tracking daily special orders, 331
URL pattern, assigning a custom, 58, 59
using instead of servlet-class, 62–63
version 2.3, ordering of web-app elements with,

40–42
visual development environment, elements

designed for, 84
way of catching exceptions, 75
for a Web application, 149–151
Web applications, complete version for, 124–127

Web applications, customizing behavior of, 36
WEB-INF subdirectory, placing in, 7
welcome-file-list entry in, 6
yacht-watching listener, 309

web.xml version 2.4, web-app subelements
declared with, 38–40

welcome pages, specifying, 71–72
welcome-file element, 71, 72
welcome-file-list element, 38, 71–72
welcome-file-list entry

making an explicit, 6
in web.xml, 122, 141, 147

when tag, 425–427
Windows, setting the CLASSPATH, 20
WorldRecords class, 393, 394
WSDL (Web Services Description Language)

file, 100
WSDL Service element, 101
wsdl-file element, 100, 101
WWW-Authentication header, 78

X
X.509 certificates, accessing client, 197
XML

Ant projects written in, 648
Apache Ant based on, 646
case sensitivity of elements, 36

XML header, of the deployment descriptor, 36
XML Schema, 36, 289
XML type characters, escaping, 421

Y
yacht orders, monitoring, 307–313
YachtWatcher class, 307, 308–309

Z
zero-argument constructor, 488
zip format, 420
<zipfileset> type, 677

	CORE SERVLETS AND JAVASERVER PAGES: ADVANCED TECHNOLOGIES, VOL. 2
	CONTENTS
	INTRODUCTION
	Who Should Read This Book
	Conventions
	About the Web Site

	ACKNOWLEDGMENTS
	ABOUT THE AUTHORS
	1 USING AND DEPLOYING WEB APPLICATIONS
	1.1 Purpose of Web Applications
	Organization
	Portability
	Separation

	1.2 Structure of Web Applications
	Locations for Various File Types

	1.3 Registering Web Applications with the Server
	Registering a Web Application with Tomcat
	Registering a Web Application with Other Servers

	1.4 Development and Deployment Strategies
	Copying to a Shortcut or Symbolic Link
	Using IDE-Specific Deployment Features
	Using Ant, Maven, or a Similar Tool
	Using an IDE in Combination with Ant

	1.5 The Art of WAR: Bundling Web Applications into WAR Files
	1.6 Building a Simple Web Application
	Download and Rename app-blank to testApp
	Download test.html, test.jsp, and TestServlet.java
	Add test.html, test.jsp to the testApp Web Application
	Place TestServlet.java into the testApp/WEB-INF/classes/coreservlets Directory
	Compile TestServlet.java
	Declare TestServlet.class and the URL That Will Invoke It in web.xml
	Copy testApp to tomcat_dir/webapps
	Start Tomcat
	Access testApp with the URL of the Form http://localhost/testApp/someResource

	1.7 Sharing Data Among Web Applications

	2 CONTROLLING WEB APPLICATION BEHAVIOR WITH WEB.XML
	2.1 Purpose of the Deployment Descriptor
	2.2 Defining the Header and the Root Element
	2.3 The Elements of web.xml
	Version 2.4
	Version 2.3

	2.4 Assigning Names and Custom URLs
	Assigning Names
	Defining Custom URLs
	Naming JSP Pages

	2.5 Disabling the Invoker Servlet
	Remapping the /servlet/ URL Pattern
	Globally Disabling the Invoker: Tomcat

	2.6 Initializing and Preloading Servlets and JSP Pages
	Assigning Servlet Initialization Parameters
	Assigning JSP Initialization Parameters
	Supplying Application-Wide Initialization Parameters
	Loading Servlets When the Server Starts

	2.7 Declaring Filters
	2.8 Specifying Welcome Pages
	2.9 Designating Pages to Handle Errors
	The error-code Element
	The exception-type Element

	2.10 Providing Security
	Designating the Authentication Method
	Restricting Access to Web Resources
	Assigning Role Names

	2.11 Controlling Session Timeouts
	2.12 Documenting Web Applications
	2.13 Associating Files with MIME Types
	2.14 Configuring JSP Pages
	Locating Tag Library Descriptors
	Configuring JSP Page Properties

	2.15 Configuring Character Encoding
	2.16 Designating Application Event Listeners
	2.17 Developing for the Clustered Environment
	2.18 J2EE Elements

	3 DECLARATIVE SECURITY
	3.1 Form-Based Authentication
	Setting Up Usernames, Passwords, and Roles
	Telling the Server You Are Using Form-Based Authentication; Designating Locations of Login and Login-Failure Pages
	Creating the Login Page
	Creating the Page to Report Failed Login Attempts
	Specifying URLs That Should Be Password Protected
	Listing All Possible Abstract Roles
	Specifying URLs That Should Be Available Only with SSL
	Turning Off the Invoker Servlet

	3.2 Example: Form-Based Authentication
	The Home Page
	The Deployment Descriptor
	The Password File
	The Login and Login-Failure Pages
	The investing Directory
	The ssl Directory
	The admin Directory
	The NoInvoker Servlet
	Unprotected Pages

	3.3 BASIC Authentication
	Setting Up Usernames, Passwords, and Roles
	Telling the Server You Are Using BASIC Authentication; Designating Realm
	Specifying URLs That Should Be Password Protected
	Listing All Possible Abstract Roles
	Specifying URLs That Should Be Available Only with SSL

	3.4 Example: BASIC Authentication
	The Home Page
	The Deployment Descriptor
	The Password File
	The Financial Plan
	The Business Plan
	The NoInvoker Servlet

	3.5 Configuring Tomcat to Use SSL
	3.6 WebClient: Talking to Web Servers Interactively
	3.7 Signing a Server Certificate
	Exporting the CA Certificate
	Using WebClient with Tomcat and SSL

	4 PROGRAMMATIC SECURITY
	4.1 Combining Container-Managed and Programmatic Security
	Security Role References

	4.2 Example: Combining Container-Managed and Programmatic Security
	4.3 Handling All Security Programmatically
	4.4 Example: Handling All Security Programmatically
	4.5 Using Programmatic Security with SSL
	Determining If SSL Is in Use
	Redirecting Non-SSL Requests
	Discovering the Number of Bits in the Key
	Looking Up the Encryption Algorithm
	Accessing Client X.509 Certificates

	4.6 Example: Programmatic Security and SSL

	5 SERVLET AND JSP FILTERS
	5.1 Creating Basic Filters
	Create a Class That Implements the Filter Interface
	Put the Filtering Behavior in the doFilter Method
	Call the doFilter Method of the FilterChain Object
	Register the Filter with the Appropriate Servlets and JSP Pages
	Disable the Invoker Servlet

	5.2 Example: A Reporting Filter
	5.3 Accessing the Servlet Context from Filters
	5.4 Example: A Logging Filter
	5.5 Using Filter Initialization Parameters
	5.6 Example: An Access Time Filter
	5.7 Blocking the Response
	5.8 Example: A Prohibited-Site Filter
	5.9 Modifying the Response
	A Reusable Response Wrapper

	5.10 Example: A Replacement Filter
	A Generic Modification Filter
	A Specific Modification Filter

	5.11 Example: A Compression Filter
	5.12 Configuring Filters to Work with RequestDispatcher
	5.13 Example: Plugging a Potential Security Hole
	5.14 The Complete Filter Deployment Descriptor

	6 THE APPLICATION EVENTS FRAMEWORK
	6.1 Monitoring Creation and Destruction of the Servlet Context
	6.2 Example: Initializing Commonly Used Data
	6.3 Detecting Changes in Servlet Context Attributes
	6.4 Example: Monitoring Changes to Commonly Used Data
	6.5 Packaging Listeners with Tag Libraries
	6.6 Example: Packaging the Company Name Listeners
	6.7 Recognizing Session Creation and Destruction
	6.8 Example: A Listener That Counts Sessions
	Disabling Cookies

	6.9 Watching for Changes in Session Attributes
	6.10 Example: Monitoring Yacht Orders
	6.11 Identifying Servlet Request Initialization and Destruction
	6.12 Example: Calculating Server Request Load
	6.13 Watching Servlet Request for Attribute Changes
	6.14 Example: Stopping Request Frequency Collection
	6.15 Using Multiple Cooperating Listeners
	Tracking Orders for the Daily Special
	Resetting the Daily Special Order Count

	6.16 The Complete Events Deployment Descriptor

	7 TAG LIBRARIES: THE BASICS
	7.1 Tag Library Components
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File

	7.2 Example: Simple Prime Tag
	7.3 Assigning Attributes to Tags
	Tag Attributes: Tag Handler Class
	Tag Attributes: Tag Library Descriptor
	Tag Attributes: JSP File

	7.4 Example: Prime Tag with Variable Length
	7.5 Including Tag Body in the Tag Output
	Tag Bodies: Tag Handler Class
	Tag Bodies: Tag Library Descriptor
	Tag Bodies: JSP File

	7.6 Example: Heading Tag
	7.7 Example: Debug Tag
	7.8 Creating Tag Files
	7.9 Example: Simple Prime Tag Using Tag Files
	7.10 Example: Prime Tag with Variable Length Using Tag Files
	7.11 Example: Heading Tag Using Tag Files

	8 TAG LIBRARIES: ADVANCED FEATURES
	8.1 Manipulating Tag Body
	8.2 Example: HTML-Filtering Tag
	8.3 Assigning Dynamic Values to Tag Attributes
	Dynamic Attribute Values: Tag Handler Class
	Dynamic Attribute Values: Tag Library Descriptor
	Dynamic Attribute Values: JSP File

	8.4 Example: Simple Looping Tag
	8.5 Assigning Complex Objects as Values to Tag Attributes
	Complex Dynamic Attribute Values: Tag Handler Class
	Complex Dynamic Attribute Values: Tag Library Descriptor
	Complex Dynamic Attribute Values: JSP File

	8.6 Example: Table Formatting Tag
	8.7 Creating Looping Tags
	8.8 Example: ForEach Tag
	8.9 Creating Expression Language Functions
	8.10 Example: Improved Debug Tag
	8.11 Handling Nested Custom Tags
	8.12 Example: If-Then-Else Tag

	9 JSP STANDARD TAG LIBRARY (JSTL)
	9.1 Installation of JSTL
	9.2 c:out Tag
	9.3 c:forEach and c:forTokens Tags
	9.4 c:if Tag
	9.5 c:choose Tag
	9.6 c:set and c:remove Tags
	9.7 c:import Tag
	9.8 c:url and c:param Tags
	9.9 c:redirect Tag
	9.10 c:catch Tag

	10 THE STRUTS FRAMEWORK: BASICS
	10.1 Understanding Struts
	Different Views of Struts
	Advantages of Apache Struts (Compared to MVC with RequestDispatcher and the EL)
	Disadvantages of Apache Struts (Compared to MVC with RequestDispatcher and the EL)

	10.2 Setting Up Struts
	Installing Struts
	Testing Struts
	Making Your Own Struts Applications
	Adding Struts to an Existing Web Application

	10.3 The Struts Flow of Control and the Six Steps to Implementing It
	Struts Flow of Control
	The Six Basic Steps in Using Struts

	10.4 Processing Requests with Action Objects
	Understanding Actions
	Example: One Result Mapping
	Example: Multiple Result Mappings
	Combining Shared Condition (Forward) Mappings

	10.5 Handling Request Parameters with Form Beans
	Struts Flow of Control: Updates for Bean Use
	The Six Basic Steps in Using Struts
	Understanding Form Beans
	Displaying Bean Properties
	Example: Form and Results Beans

	10.6 Prepopulating and Redisplaying Input Forms
	Struts Flow of Control
	The Six Basic Steps in Using Struts
	Using Struts html: Tags
	Prepopulating Forms
	Example: Prepopulating Forms
	URL Design Strategies for Actions
	Redisplaying Forms
	Example: Redisplaying Forms

	11 THE STRUTS FRAMEWORK: DOING MORE
	11.1 Using Properties Files
	Advantages of Properties Files
	Struts Flow of Control—Updates for Properties Files
	Steps for Using Properties Files
	Example: Simple Messages
	Dynamic Keys
	Parameterized Messages

	11.2 Internationalizing Applications
	Loading Locale-Specific Properties Files
	Setting Language Preferences in Browsers
	Example: Internationalizing for English, Spanish, and French
	Results

	11.3 Laying Out Pages with Tiles
	Tiles Motivations
	Prerequisites for Tiles
	The Four Basic Steps in Using Tiles
	Example: Simple Tiles
	Handling Relative URLs
	Example: e-boats Application

	11.4 Using Tiles Definitions
	Tiles Definitions Motivations
	The Five Basic Steps in Using Tiles Definitions
	Example: e-boats Application with Tiles Definitions

	12 THE STRUTS FRAMEWORK: VALIDATING USER INPUT
	12.1 Validating in the Action Class
	Struts Flow of Control
	Performing Validation in the Action
	Example: Choosing Colors and Font Sizes for Resume

	12.2 Validating in the Form Bean
	Struts Flow of Control
	Performing Validation in the ActionForm
	Example: Choosing Colors and Font Sizes for a Resume (Take 2)
	Using Parameterized Error Messages
	Example: Validation with Parameterized Messages

	12.3 Using the Automatic Validation Framework
	Manual versus Automatic Validation
	Client-Side versus Server-Side Validation
	Struts Flow of Control
	Steps in Using Automatic Validation
	Example: Automatic Validation

	APPENDIX: DEVELOPING APPLICATIONS WITH APACHE ANT
	A.1 Summarizing the Benefits of Ant
	A.2 Installing and Setting Up Ant
	A.3 Creating an Ant Project
	Defining the Ant Project
	Writing Targets
	Assigning Tasks to Targets
	Running an Ant Target

	A.4 Reviewing Common Ant Tasks
	The echo Task
	The tstamp Task
	The mkdir Task
	The delete Task
	The copy Task
	The javac Task

	A.5 Example: Writing a Simple Ant Project
	A.6 Using Ant to Build a Web Application
	Ant Dependencies

	A.7 Example: Building a Web Application
	The prepare Target
	The copy Target
	The build Target

	A.8 Using Ant to Create a WAR File
	The jar Task
	The manifest Task

	A.9 Example: Creating a Web Application WAR File
	The war Target

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

